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Abstract

Each year, consultants and field scouts working in commercial agriculture undertake a massive, decentralized 
data collection effort as they monitor insect populations to make real-time pest management decisions. These 
data, if integrated into a database, offer rich opportunities for applying big data or ecoinformatics methods in 
agricultural entomology research. However, questions have been raised about whether or not the underlying 
quality of these data is sufficiently high to be a foundation for robust research. Here I suggest that repeat-
ability analysis can be used to quantify the quality of data collected from commercial field scouting, without 
requiring any additional data gathering by researchers. In this context, repeatability quantifies the proportion 
of total variance across all insect density estimates that is explained by differences across populations and 
is thus a measure of the underlying reliability of observations. Repeatability was moderately high for cotton 
fields scouted commercially for total Lygus hesperus Knight densities (R = 0.631) and further improved by 
accounting for observer effects (R = 0.697). Repeatabilities appeared to be somewhat lower than those com-
puted for a comparable, but much smaller, researcher-generated data set. In general, the much larger sizes 
of ecoinformatics data sets are likely to more than compensate for modest reductions in measurement pre-
cision. Tools for evaluating data quality are important for building confidence in the growing applications of 
ecoinformatics methods.
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Analysis of large, observational data sets gathered in commercial 
agricultural production, termed “big data” or “ecoinformatics” 
research, is finding increasing application as a research method-
ology that can complement traditional small-plot experimenta-
tion (Jiménez et al. 2009, 2019; Cock et al. 2011; Rosenheim and 
Gratton 2017; Shakoor et al. 2019). These methods are also being 
adopted aggressively by the private sector, with the rapid growth of 
informatics-based companies working in agriculture and fueled by 
the increased availability of data from sensors mounted on tractors 
and harvesters, from remote sensing, and from other sources (e.g., 
The Climate Corporation, FBN, Trimble, Granular).

Ecoinformatics requires an abundant source of data; for research 
in agricultural pest management, abundant data often do exist, be-
cause farmers and consultants (pest control advisors) scout many 
fields to generate estimates of insect densities that drive real-time 

management decisions. This field scouting represents a vast, decen-
tralized data-gathering effort. Marshaling these data can produce 
large, real-world data sets that, when analyzed properly, can gen-
erate powerful research insights (de Valpine et al. 2010, Frost et al. 
2013, Cohen et al. 2017, Zhang et al. 2018, Emery and Mills 2019, 
Paredes et al. 2021).

Big data research methods have, however, been met with skepti-
cism. Primary concerns include issues surrounding data privacy and 
the difficulties of inferring causal relationships from purely observa-
tional data (Rosenheim et al. 2011, Rosenheim and Gratton 2017). In 
this paper, I focus on another core concern regarding ecoinformatics 
methods in pest management research: are commercial field scouting 
data of a sufficiently high quality to be the foundation for robust 
research (Farley et al. 2018, Shakoor et al. 2019, Aubin et al. 2020)? 
Are we at risk of a “garbage in, garbage out” scenario, where no 
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amount of sophisticated data analysis methodologies will be able to 
compensate for a flawed initial data set?

There are several possible ways to evaluate the quality of 
ecoinformatics data. One approach does not examine the raw data 
directly, but rather tests the ‘downstream’ products of ecoinformatics 
research, asking if the conclusions that emerge from ecoinformatics 
analyses can be confirmed by analysis of researcher-generated ob-
servational or experimental data sets (e.g., Rosenheim and Meisner 
2013, Cass et  al. 2019, 2021). Another approach is to assess dir-
ectly the quality of raw data derived from commercial scouting. 
Researchers can visit fields immediately following a commercial 
scout, and repeat the same sampling procedures (e.g., Rosenheim 
et al. 2006). These methods can be quite labor-intensive, however, 
and professional consultants may, understandably, not always want 
to be evaluated in this way.

Perhaps most desirable are methods of assessing ecoinformatics 
data quality that do not require additional data to be collected, and 
that instead use internal features of an ecoinformatics data set to 
evaluate data quality. Here I  capitalize on such a ‘built-in’ oppor-
tunity that is offered by an ecoinformatics dataset that includes a 
repeated sampling of the same cotton fields, on the same day (or 
rarely the following day), by different scouts to quantify densities of 
the western tarnished plant bug, Lygus hesperus Knight (Hemiptera: 
Miridae). Although the efficiency demands of commercial scouting 
usually preclude redundant sampling of fields, in some cases con-
sultants may repeat sampling to confirm key observations before 
costly interventions are recommended. Formal analysis of the repeat-
ability of pest density estimates provides a direct assessment of the 
reliability of commercially gathered data. As a point of comparison, 
I also conduct a repeatability analysis of a much smaller researcher-
generated dataset on L. hesperus densities in cotton.

Methods

I analyzed a subset of an ecoinformatics data set on densities of 
L.  hesperus gathered from commercial cotton production (three 
large ranches, each with many fields; field size ca. 61–182 ha) in the 
San Joaquin Valley, California. One independent pest control con-
sultant hired one, or sometimes two, summer field scouts each year 
(some scouts returned for a second summer) to assist with sampling. 
Samples were taken with a standard sweep net (38.1 cm diameter) 
swung fifty times through the upper plant canopy; counts of nymphs 
and adults were recorded separately, and are reported throughout 
as numbers per sweep sample (per 50 net swings). Although most 
fields were sampled only once, approximately weekly, some fields 
were sampled both by the consultant and by a field scout on the same 
day (less commonly separated by one day), often as the field neared a 
threshold triggering a pesticide application. Sweep samples were typ-
ically taken at several locations, spread ca. evenly across the field; on 
average, the consultant took 10.6 ± 6.8 (SD) sweep samples per field 
(range 3–47) and the scout took 16. 2 ± 8.3 samples (range 3–52), 
with a larger number of samples typically taken in larger fields. The 
identity of the sampler was recorded with each sampling record. Pairs 
of consultant-scout repeat samplings (n = 253, with seven different 
scouts) were gathered from 1998 to 2007. Lygus hesperus densities 
in sampled fields averaged 1. 32 ± 1.74 (SD) nymphs (range 0–12.67) 
and 2. 33 ± 1.94 (SD) adults (range 0–12.86) per sweep sample.

Repeatability analyses were conducted using the rptR package 
(Stoffel et al. 2017, 2019) in R, which fits linear, mixed effect statis-
tical models to the data using the lme4 package (Bates et al. 2015). 
Both (1) ‘consistency repeatabilities’ and (2) ‘adjusted repeatabilities,’ 

which include statistical control for observer effects, were computed. 
Confidence intervals were calculated with parametric bootstrapping 
with 1,000 replicates, and P-values were computed with likelihood 
ratio tests. The repeatability metric, R, measures the proportion of 
total variance across all mean density estimates that is explained by 
differences between ‘groups’ (Nakagawa and Schielzeth 2010); for 
my analysis, each pair of observed mean L. hesperus densities re-
corded by the consultant and the scout for a given field on a given 
date forms a group. These groups are treated as a random effect, 
and the repeatability analysis quantifies how much of the total 
variance in L. hesperus mean density estimates is explained by this 
random effect. Total variance is equal to the sum of between-group 
differences and within-group differences. The repeatability value, R, 
can be compared with the coefficient of variation explained, r2, in 
simple linear regression, as both reflect the proportion of variance 
explained. Within-group differences, which we hope to minimize 
for high-quality data, are generated by differences between different 
samplers (observer effects), within-field spatial heterogeneity in 
L. hesperus densities (the consultant and scout do not sample pre-
cisely the same locations within each field), stochasticity in the pro-
cess of capturing nymphs with the sweep net, and errors in finding all 
captured insects. Small immatures are especially difficult to recover 
from sweep nets, as they are often lodged among leaves and other 
plant debris at the base of the net bag, whereas the larger nymphs 
and adults can usually quickly extricate themselves from the plant 
debris and climb up the sides of the net bag, where they are readily 
counted (Rosenheim et  al. 2006). Observer effects were expected, 
because no two individuals swing a sweep net in precisely the same 
way, or have precisely the same skills in finding the insects within 
the net bag.

Mean L. hesperus density estimates generated by the consultant 
and the scouts were based on quite variable numbers of replicate 
sweep samples (ranges for consultant 3–47 and for summer scouts 
3–52). To see if the agreement between consultant and scout density 
estimates was improved when greater numbers of sweep samples 
were conducted, I tested if the absolute values of the residuals from 
a regression of scout total L. hesperus counts on consultant total 
counts were inversely related to the number of replicate sweep sam-
ples (1-tailed tests).

Some of the lack of repeatability of mean L.  hesperus density 
estimates comes from the inherent variation seen across the multiple 
sweep net samples made by a single observer on a single date in a 
single field; this source of variation is ubiquitous (e.g., Sevacherian 
and Stern 1972). I  performed simulations to produce an approxi-
mate quantification of the impact of this inherent between-sweep 
sample variation on values obtained in the broader repeatability 
analysis. I used non-parametric bootstrapping to create n = 400 rep-
licate sets of sweep samples. Bootstrapping resamples with replace-
ment from the collection of L. hesperus counts observed across the 
sweep samples taken in a particular focal field. I retained the same 
number of sweep samples as were actually taken for each field sam-
pled, and used these to generate different mean density estimates. 
These were combined across all 253 sampled fields to create sets of 
bootstrapped mean estimates. These sets were then randomly paired 
to create 200 replicate pairs of mean density estimates that could 
be fed into the repeatability analysis. This was done separately for 
(1) the consultant data, and (2) the data generated by the group of 
summer field scouts. This analysis was designed to reveal the de-
gree to which the inherent variation across replicate sweep samples 
taken by a single field scout within a single field contributed to the 
loss of repeatability observed when different field scouts sampled 
the same field.
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To provide a point of comparison, I also present a repeatability 
analysis of a much smaller data set of L. hesperus densities, gener-
ated by three research assistants and me in nine commercial cotton 
fields in the San Joaquin Valley, California in 2004. Approximately 
1–2 ha subplots of large commercial fields were sampled; thus, it is 
likely that only part of the spatial heterogeneity present in the field 
was sampled. One researcher sampled all nine fields (mean number 
of sweep samples per field 8.89 ± 1.54; range 5–10), and each field 
was simultaneously sampled by one of three other researchers (mean 
samples per field 9.11 ± 1.69; range 5–11). Methods were the same 
as those used by the commercial consultant; L. hesperus densities 
in sampled fields averaged 2.07 ± 1.50 (SD) nymphs (range 0–5.10) 
and 3.87 ± 2.01 (SD) adults (range 1.33–8.00) per sweep sample.

Results

Consultant Data Set
Consistency repeatability values, which excluded observer effects, 
were R = 0.597 ± 0.042 (SE) (95% CI 0.509–0.669, P < 0.001) for 
L. hesperus nymphs; R = 0.580 ± 0.042 (SE) (95% CI 0.492–0.654, 
P < 0.001) for adults; and R = 0.631 ± 0.038 (SE) (95% CI 0.547–
0.703, P < 0.001) for total counts (all motile stages combined). Thus, 
63.1% of the variation in total L. hesperus counts was explained by 
differences between fields, with the remaining 36.9% of the vari-
ation explained by differences between the two mean density esti-
mates made for each field, reflecting effects of within-field spatial 
heterogeneity, observer effects, and sampling error.

A simple linear regression shows that the data were somewhat 
noisy, and also that the consultant tended to record greater L. hes-
perus counts than did the scouts (Fig. 1). Linear regressions exam-
ining relationships between mean density estimates generated by the 

consultant and each of the summer scouts considered individually 
suggested that each of the five scouts who sampled ≥20 fields showed 
the same pattern of producing lower L. hesperus counts than did the 
consultant (data not shown).

Including observer as a fixed effect in the analysis produced ad-
justed repeatability values that were moderately higher: R = 0.650 ± 
0.035 (SE) (95% CI 0.585–0.727, P < 0.001) for L. hesperus nymphs; 
R = 0.629 ± 0.038 (SE) (95% CI 0.558–0.706, P < 0.001) for adults; 
and R = 0.697 ± 0.032 (SE) (95% CI 0.636–0.762, P < 0.001) for 
all motile stages combined. In the adjusted repeatability analysis for 
total counts, the observer effect itself had a repeatability of 0.065 ± 
0.016 (95% CI: 0.043–0.104), consistent with the modest improve-
ment in the adjusted repeatability value (R = 0.697) compared to the 
consistency repeatability value (R = 0.631).

I found only mixed support for the idea that density estimates 
based on greater numbers of sweep samples would be more repeat-
able. The magnitudes of residuals from a regression of scout total 
L. hesperus counts on consultant total counts were not related to 
consultant sweep sample number (coefficient −0.0017 ± 0.0103 SE, 
df  =  249, P  =  0.43) and only marginally related to scout sample 
number (coefficient −0.0134  ± 0.0082 SE, df  =  249, P  =  0.052). 
This analysis suggests that the inherent variation seen across rep-
licate sweep samples taken in a field contributes only modestly to 
depressing the repeatability of the mean estimates. This conclusion 
was reinforced by the simulation-based explorations of the conse-
quences of variation across sweep samples. Bootstrapped resamplings 
of the replicate sweep samples made in each field yielded data sets 
with repeatabilities of 0.946  ± 0.009 (SD) for the consultant and 
0.962 ± 0.006 (SD) for the summer field scouts.

Researcher Data Set
The researcher data set produced qualitatively similar results, but 
higher repeatability estimates (Fig. 2). Consistency repeatability 
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Fig. 1. Bivariate scatterplot showing the repeatability of mean density 
estimates of L. hesperus (nymphs plus adults) generated by averaging across 
multiple sweep net samples made in commercial cotton. Each field was 
sampled on the same day, or rarely on two successive days, by a consultant 
and a summer field scout employed by the consultant. The dashed line has 
a slope  =  1 and includes the origin. The solid line is a linear regression, 
constrained to go through the origin, showing that summer scouts 
tended to under-estimate L.  hesperus densities relative to the consultant 
(slope = 0.626 ± 0.020 (SE), r = 0.893, df = 252, P < 0.001).
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Fig. 2. Bivariate scatterplot showing the repeatability of mean density 
estimates of L. hesperus (nymphs plus adults) generated by averaging across 
multiple sweep net samples made in commercial cotton. Each field was 
sampled on the same day by two members of a university research team. 
The dashed line has a slope = 1 and includes the origin. The solid line is a 
linear regression, constrained to go through the origin (slope = 0.817 ± 0.073 
(SE), r = 0.970, df = 8, P < 0.001).
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values, which excluded observer effects, were R  =  0.898  ± 0.093 
(SE) (95% CI 0.610–0.976, P  <  0.001) for L.  hesperus nymphs; 
R = 0.623 ± 0.219 (SE) (95% CI 0.016–0.888, P = 0.026) for adults; 
and R = 0.816 ± 0.152 (SE) (95% CI 0.392–0.951, P = 0.001) for 
total counts. Adjusted repeatability values, including observer ef-
fects, were moderately higher: R  =  0.910  ± 0.071 (SE) (95% CI 
0.732–0.989, P < 0.001) for L. hesperus nymphs; R = 0.744 ± 0.157 
(SE) (95% CI 0.378–0.966, P = 0.008) for adults; and R = 0.901 ± 
0.078 (SE) (95% CI 0.731–0.987, P < 0.001), for total counts. In the 
adjusted repeatability analysis for total counts, the observer effect 
had a repeatability of 0.063 ± 0.080 (95% CI: 0.011–0.317).

Discussion

The repeatability of total L.  hesperus density estimates in the 
ecoinformatics data set, a fundamental measure of data reliability, 
was moderately high. 63.1% of the total variation in mean L. hes-
perus densities was explained by between-field differences in L. hes-
perus numbers. Including the observer effect in the repeatability 
analysis increased the variance explained to 69.7%, with the re-
maining 30.3% of the variation that was unexplained produced by 
within-field spatial heterogeneity in L. hesperus densities and sam-
pling error. Simulations suggested that variation across replicate 
sweep samples made by a single observer within a given field con-
tributed only a small part of the total unexplained variation in mean 
L. hesperus density estimates; thus, the commercial field scouts did 
appear to be taking a sufficiently large number of replicate sweep 
samples to stabilize their estimate of mean L.  hesperus density. 
Fields for which larger numbers of replicate sweep samples were 
made to produce a single mean density estimate were associated 
with only small improvements in repeatability. This may be because 
larger numbers of sweep samples were often taken in larger cotton 
fields, such that the expected improvement in density estimation was 
partially offset by the greater spatial heterogeneity in L. hesperus 
densities within larger fields. Lygus hesperus are notoriously difficult 
to sample, because they can be very patchily distributed within fields 
(Sevacherian and Stern 1972), because small nymphs are difficult 
to locate in sweep net bags (Rosenheim et  al. 2006), and because 
L.  hesperus can be very damaging even at low densities (1–2 per 
sweep sample, Rosenheim and Meisner 2013), forcing consultants 
to try to sample very low-density populations. Thus, this was a dif-
ficult test case for a study of ecoinformatics data quality. A parallel 
repeatability analysis of researcher-generated L. hesperus density es-
timates produced similar results, with somewhat higher repeatability 
values, although the small size of the researcher-generated data set 
meant that the confidence intervals for the repeatability values from 
the consultant-generated and researcher-generated datasets were 
broadly overlapping.

Improved repeatability values were observed in analyses that 
included observer effects for both the consultant- and researcher-
generated data sets. This suggests that, whenever possible, including 
observer identity in statistical models of ecoinformatics data will en-
hance the quality of the resulting inferences.

Although the repeatability values for the researcher-generated 
data set appeared to be somewhat greater than those for the 
consultant-generated data set, this improvement would, in research 
practice, likely be offset by the larger sizes of most ecoinformatics 
data sets (Rosenheim and Gratton 2017). For example, researcher-
generated observational data sets on L.  hesperus population 
densities in California cotton have, in recent years, including a study 
of 18 fields (de Valpine and Rosenheim 2008), 21 fields (Rosenheim 

et  al. 2006), and 136 fields (Carrière et  al. 2012), whereas an 
ecoinformatics data set included 1118 fields (Rosenheim and 
Meisner 2013). Despite using what may have been slightly noisier 
data, the ecoinformatics data set had the statistical power to confi-
dently resolve economically-important yield effects (P < 0.0001) that 
had been marginally non-significant in previous, experimental work 
(discussed in Rosenheim and Meisner 2013).

In this paper, I used repeatability analysis to evaluate noisiness 
in mean insect density estimates across observers, comparing con-
sultant versus scout estimates. Not all ecoinformatics data sets will 
include a repeated sampling of the same fields on the same days, 
limiting the applicability of this approach. However, another more 
broadly applicable approach would be to examine the repeatability 
of the multiple sub-samples that are typically taken when large fields 
are sampled. Such an approach would be imperfect in some respects, 
as it would both underestimate some sources of error (by excluding 
across-observer differences) and overestimate other sources of error 
(because sub-samples are not used in isolation when making pest 
management decisions, but rather are averaged, which creates a 
more stable estimate of overall density). Nevertheless, this type of 
repeatability analysis would produce an objective measure of data 
reliability that could be compared with comparable measures from 
researcher-generated data.

In cases where researcher-generated insect density estimates 
differ from density estimates generated in the course of commercial 
farming, it may be tempting to prefer the researcher's data. However, 
a case can sometimes be made for preferring density estimates gener-
ated in commercial agriculture, even if they are noisier. If researchers 
produce management recommendations for farmers that are con-
ditioned on pest densities, it will be sampling in the commercial 
setting that is most critical for the actual implementation of pest 
management. A  barrier to the implementation of research-derived 
recommendations can be erected when researchers and commercial 
pest management advisors are ‘speaking different languages.’ Thus, 
working with commercial data, even if they are noisy, can in some 
cases be advantageous, because it allows researchers and farmers to 
work with fully comparable data.

Ecoinformatics studies will rightfully continue to be scrutinized 
for underlying data quality. It is therefore important for agricultural 
entomologists to develop efficient and flexible means for quantifying 
data quality; repeatability analyses are likely to be a useful tool in 
those efforts.
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