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Landscape crop composition effects on cotton
yield, Lygus hesperus densities and pesticide
use
Matthew H Meisner,a* Tania Zaviezob and Jay A Rosenheimc

Abstract

BACKGROUND: Landscape crop composition surrounding agricultural fields is known to affect the density of crop pests, but
quantifying these effects, as well as measuring how they translate to changes in yield, is difficult. Using a large dataset consisting
of 1498 records of commercial cotton production in California between 1997 and 2008, we explored the relationship between
landscape composition and cotton yield, the density of Lygus hesperus (a key cotton pest) at field-level and within-field spatial
scales and pesticide use.

RESULTS: We found that the crop composition immediately adjacent to a cotton field was associated with substantial differences
in cotton yield, L. hesperus density and pesticide use. Furthermore, crops that tended to be associated with increased L. hesperus
density also tended to be associated with increased pesticide use and decreased cotton yield.

CONCLUSION: Our results suggest a possible mechanism by which landscape composition can affect cotton yield: by increasing
the density of pests which in turn damage cotton plants. Our quantification of how surrounding crops affect pest densities,
and in turn yield, in cotton fields has significant impacts for cotton farmers, who can use this information to help optimize crop
selection and ranch layout.
© 2016 Society of Chemical Industry
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1 INTRODUCTION
An increasing world population, along with urbanization which is
shrinking agricultural land area, is generating pressure to increase
crop yields on existing farms.1 In order to increase crop yields,
farmers need quantitative information about how the decisions
they make affect yield. This information can enable farmers to
make optimal crop management decisions that maximize crop
productivity and reduce the need for costly, environmentally dam-
aging inputs such as pesticides and fertilizers.

One of the decisions farmers make that can substantially affect
crop performance is the determination of ranch layout, i.e. which
crops to grow in which fields during the same growing season.
Ranch layout can affect crop performance in various ways. Firstly,
as certain crops may act as sources and sinks of certain crop
pests, the identities of crops grown near an agricultural field can
affect the pest densities in that field, and these pests may in turn
affect yield.2 For example, some crops may act as pest sources
if they attract and support the build-up of localized populations
of particular pests. These localized pest populations may then
attack crops in nearby fields, potentially inflicting yield loss or
necessitating insecticide applications. Alternatively, some crops
may act as pest sinks when they attract and retain individuals
of a particular pest species that preferentially attacks that crop,
thereby diverting those pests from nearby crops and potentially
preventing yield loss.3 Whether or not a nearby patch serves as
a source or a sink of herbivores depends on the relative birth,
death, immigration and emigration rates in each of the habitats.4

Secondly, landscape composition surrounding agricultural fields
has been shown to affect the density of natural enemies (which
attack crop pests) in those fields; these effects may translate to
differences in pest suppression and, in turn, crop damage.2,5 – 7

Despite the large body of evidence that landscape composition
can affect populations of both crop pests and natural enemies,
there is virtually no documentation of how these effects correlate
with, or cause, changes in crop yield.2 The economic and envi-
ronmental costs associated with pesticide applications incentivize
profit-maximizing farmers only to treat pest populations that are
likely to affect yield. This makes quantification of the yield effects
associated with landscape effects on pest populations extremely
important for providing actionable insights to farmers. In addition,
while some studies have documented correlations between land-
scape composition and insecticide use at the level of a county,8
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there has been very little research demonstrating relationships
between landscape composition and insecticide use at the level of
a field. Furthermore, the relationships between landscape compo-
sition and pesticide use in California cotton fields are not known.
These existing gaps in the literature are motivations for this study.

Currently, many farmers make important crop management
decisions, such as ranch layout, with incomplete information.
Farmers often do not have access to data-driven scientific evidence
about which management practices maximize yield, so they are
left to base important decisions on personal experience and
intuition. The goal of our project is to give farmers the tools
to make better-informed decisions that are based on robust,
data-driven evidence. Here, we focus on the decision of ranch
layout, specifically seeking to quantify the association between
neighboring crops and the pest densities and yield in cotton fields.

To do this, we compiled a dataset consisting of 1498 records of
commercial cotton production across California from 1997 to 2008.
This ‘ecoinformatics’9 approach allowed us to capitalize on a rich,
existing, but underutilized data source – the data that farmers and
crop consultants collect about their agricultural operations. Farm-
ers and crop consultants often collect meticulous records about
their crops, including data on pest densities and yield. While these
data are used to guide short-term crop management decisions,
the power of these data is greatly magnified when aggregating
data from many farms, as this affords the statistical power to pick
out subtle trends and to quantify important relationships in the
data.9

Our approach of collecting data from actual commercial farms,
instead of conducting our own field experiments, is particularly
attractive for addressing questions about factors that operate at
broad spatial scales, such as landscape composition. Studying the
effects of adjacent crops on a field’s pest densities and yield using
only small plots could lead to misleading results, as many key
agricultural pests disperse across wide geographies.10 In particular,
Lygus hesperus, a key pest of cotton11 – 14 and the focus of our study,
is known to travel across agricultural landscapes at scales of at least
1 km.15 Spatial movement of agricultural pests makes questions
of landscape composition difficult to study experimentally owing
to the vast land areas that would need to be under experimental
manipulation.

The role of surrounding crops in the severity of L. hesperus pres-
sure in cotton has been recognized for decades.16,17 Numerous
previous studies have demonstrated relationships between land-
scape composition surrounding cotton fields and the L. hesperus
densities in those fields.18 – 22 Despite this rich body of research,
these landscape effects on L. hesperus densities in cotton fields
have not been connected to corresponding effects on yield and
farmer pesticide use.

A quantitative understanding of the effects of landscape compo-
sition on pest densities and yield could be of practical use to farm-
ers in several ways. Firstly, for a farmer who has not yet decided
which crops to grow, knowledge of the effects of landscape com-
position allows a farmer to make a more informed decision about
which crops to grow, so as to reduce the likelihood of adverse
effects of neighboring crops. Assuming a farmer has committed
to growing certain crops, this information could still be used opti-
mally to arrange these crops across fields. In both cases, other fac-
tors, such as crop rotation, soil types and the economic value of
different crops, would also likely be taken into consideration when
deciding which crops to grow in which fields. Finally, even if ranch
layout has already been determined, knowing what neighboring
crops are associated with higher likelihood of pest problems may

help farmers and crop consultants to focus pest detection efforts
on fields at higher risk of pest infestations.

To explore the relationship between landscape composition and
crop performance, we analyzed our data using statistical models.
In this study, we specifically focused on one component of land-
scape composition: the crop fields immediately adjacent to a focal
crop field. Firstly, we explored the association between landscape
composition (at the scale of immediately adjacent crops) and cot-
ton yield. Secondly, we explored the association between land-
scape composition and the early-season density of L. hesperus, a
key pest of cotton. We then compared the estimated effects of
landscape composition on pest density with the estimated effects
of landscape composition on yield, to explore the possibility that
the effects on pest density may explain the effects on yield. Using
a smaller dataset, we explored the relationship between adjacent
crops and the density of L. hesperus in immediately adjacent por-
tions of the field, with the goal of providing increased confidence
in the relationship between adjacent crops and L. hesperus density.
Finally, we explored the relationship between landscape composi-
tion and pesticide use in cotton fields, seeking to connect effects
on L. hesperus density with changes in farmer behavior.

2 MATERIALS AND METHODS
2.1 Dataset
We built our dataset by aggregating historical crop records from
1498 commercial cotton crops in California’s San Joaquin Valley;
these observations were collected from 566 unique fields and span
cotton plantings from 1997 to 2008. The dataset integrates records
collected by both farmers and professional crop consultants hired
to monitor field conditions and recommend crop management
strategies. The following variables were used in our analyses:

1. Surrounding crops. For 1088 of the 1498 crops, our dataset con-
tained the identity of the crop grown in each of the eight fields
immediately adjoining the focal field (to the north, northeast,
east, southeast, south, southwest, west and northwest). Sev-
enteen unique crops were grown in adjacent fields (any crops
with fewer than 30 observations were excluded from the anal-
ysis): alfalfa, almonds, barley, corn, cotton, garbanzo beans,
garlic, grapes, lettuce, melons, onions, pistachios, potatoes,
safflower, sugar beets, tomatoes and wheat.

2. Cotton yield. Cotton lint yield was measured, once per crop,
in bales acre−1 (converted to kg ha−1 for our analyses) and
recorded for 1240 of the 1498 records.

3. Field-level Lygus hesperus densities. Crop consultants mea-
sured L. hesperus densities approximately weekly, primarily
during June and July. The consultants’ sampling procedure
consisted of 50 swings of a sweep net across the top of the
plant canopy. As not all consultants sampled on the same days
or at exactly the same intervals for all fields, we transformed
successive samples into mean L. hesperus density estimates
(insects sweep−1) by calculating the area under the linear
curve of L. hesperus density versus time and dividing by the
number of days in the sampling interval. These data were col-
lected at the field level, i.e. the consultants recorded a single
pest density for each field on each day the field was sampled.
June L. hesperus density was recorded for 1497 of the 1498
total crop records in the database.

4. Within-field Lygus hesperus densities. For 914 of the 1498
crops, our database contained additional information about
within-field densities of L. hesperus. These records come from
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434 unique fields between 2005 and 2008. The within-field L.
hesperus samples were obtained in the same manner as the
field-level L. hesperus density samples, but the quadrant of the
field in which the sample was taken, i.e. the edge of the field
closest to the sample location, was also recorded (north, east,
south or west).

5. Pesticide applications. The dates, product names and insect
targets of all pesticide applications were recorded.

6. Crop rotation. The identity of the crop grown in the same field
during the previous growing season was recorded for 1273 of
the 1498 records in the dataset.

7. Cotton species. Our database contained records of two differ-
ent cotton species: Gossypium barbadense L. (upland cotton)
and Gossypium hirsutum L. (Acala cotton). The cotton species
was known for 1452 of the 1498 records. Within each species,
several different cotton varieties were planted, but this factor
was not considered in the analysis because we did not reliably
have this information for every field.

8. Field ID. Each field was assigned a unique ID so that we could
identify repeated observations of the same field in different
years.

9. Ranch ID. Fields near each other were clustered into ranches
by the farmers who own the fields.

10. Year. The year in which the crop was grown was recorded for
each unique field–year combination.

11. Field location. The latitude and longitude approximating the
center of each field was obtained using ranch maps provided
by the farmers and crop consultants who provided data for
this project.

2.2 Models
2.2.1 Model 1: Association between landscape composition
and yield
Firstly, we quantified the association between which crops were
grown immediately adjacent to a focal field and the yield of the
cotton crop in that field. To do so, we employed a generalized
additive mixed model.23,24 A generalized additive model was an
attractive modeling approach, as it provides a straightforward way
explicitly to model a spatial trend in the dependent variable.25

The dependent variable in this model was the field’s yield. The
main independent variables of interest were the number of fields,
out of the eight adjacent fields, that were planted with each of
the 17 crops. Additionally, we included several other independent
variables in the model to control for other factors that could
plausibly explain some variability in yield:

1. Spatial trend in yield. It is reasonable to expect fields close to one
another in space to be more similar to each other than those far
away. For example, nearby fields likely experience more similar
climatic conditions and more similar soil types than do fields
further from each other. Nearby fields may also experience
more similar pressure from pests and diseases, the distribution
of which across the landscape may not be constant. As weather
and pest pressure are two factors believed to affect cotton yield,
spatial trends in these factors may lead to spatial trends in
cotton yield. Failing to model this trend could taint inferences
about other variables in the model, as the assumption of
independence between fields would be violated. To help model
the spatial trend in yield across the fields in our dataset, we
included a smoothed interaction term between longitude and
latitude in the model. This is a common approach used for
modeling data with spatial trends.25 To verify that this approach

had adequately accounted for the spatial trend in our data, we
performed Moran’s I-test for spatial autocorrelation with the
residuals of the model.

2. Crop rotation. Previous research has suggested that crop rota-
tion is associated with changes in cotton yield.26 To control for
this potential yield driver, we included a categorical indepen-
dent variable in the model specifying the identity of the crop
grown in the same field the previous year.

3. Cotton species. Records in our database consisted of two dif-
ferent cotton species; as these species are known to differ in
yield,26 we included cotton species as a categorical indepen-
dent variable.

4. Ranch. To control for yield variability between ranches, the
ranch ID was included in the model as a random effect.

5. Field. To control for field-specific variability in yield, the field ID
was included in the model as a random effect.

6. Year. To control for any year-to-year variability in yield, the crop
year (from 1998 to 2008) was included in the model as a random
effect.

Each unique field–year combination was treated as a unique
replicate, i.e. if the database contained data from the same field
from two or more years, then the data from each year was treated
as a separate observation. We used the ‘gamm4’ function in the
‘gamm4’ R package, v.0.2-3, for fitting the generalized additive
mixed model.

2.2.2 Model 2: Association between landscape composition and
field-level L. hesperus density
Next, we quantified the association between which crops were
grown immediately adjacent to a focal field and the density of L.
hesperus in that field. We again employed a generalized additive
mixed model, with the exact same structure as model 1, but we
replaced yield with L. hesperus density as the dependent variable.
Specifically, we used the average L. hesperus density during the
entire month of June as the dependent variable, as previous
studies have suggested that cotton is particularly susceptible to
yield loss from L. hesperus herbivory early in the growing season.27

2.2.3 Model 3: Relationship between L. hesperus effects and yield
effects
In the first model, we estimated, for each of the 17 crops, a
parameter describing the expected change in yield associated
with each additional adjacent field that contained that crop. In
the second model, we estimated the expected change in June
L. hesperus density associated with each additional adjacent field
containing each crop. Next, to better understand and quantify any
potential relationship between the neighboring crops’ association
with changes in yield and their association with changes in L.
hesperus density, we performed a Bayesian linear regression28 of
the estimated effects of each crop on yield versus the estimated
effects of each crop on L. hesperus density.

Additionally, to account for uncertainty in the estimated effects
of the crops on both yield and L. hesperus density, we drew sam-
ples of the crop-specific parameter estimates from each of the
first two models and repeatedly performed the linear regression
using each sample. Specifically, we drew 10 000 samples of the
17 crop-specific yield effect parameters from model 1 using the
estimated covariance matrix and assuming a multivariate normal
distribution. We repeated this sampling from model 2 for the pest
parameters. For each of these 10 000 samples, we performed a
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Bayesian linear regression of the yield effects versus the L. hes-
perus effects. We obtained 10 000 posterior samples from each
of the 10 000 regressions and discarded the first 5000 as burn-in.
Non-informative N(0,100) priors were used for the intercept and
slope, along with a non-informative inv-gamma(0.001, 0.001) prior
for the variance. Models were fitted using the Stan probabilis-
tic programming language29 accessed using the RStan package
v.2.5.0.30

2.2.4 Model 4: Association between landscape composition and
within-field L. hesperus density
We fitted a similar model to model 2 using the records with
additional data on the within-field densities of L. hesperus. In
this model, each unique field–quadrant–year combination was
included as a unique replicate. The response variable was June
density of L. hesperus. The main predictor variable of interest was
the identity of the crop grown in the field immediately adjacent
to the quadrant in which the pest density was measured; this
categorical variable was included as a fixed effect (cotton was
taken to be the baseline crop, so indicator variables for all other
crops were included). As in models 1 and 2, we also included
fixed effects for the crop grown the previous year and the cotton
type, random effects for field, ranch and year and a smoothed
latitude–longitude interaction term. To control for the fact that
multiple samples from different locations in the same field in the
same year may not be independent, we also included a random
effect for the field–year combination.

2.2.5 Model 5: Relationship between field-level and within-field L.
hesperus effects
In the second model, we estimated, for each of the 17 crops, a
parameter describing the expected change in June field-level L.
hesperus density associated with each additional field, of the eight
fields surrounding the focal field, that contained that crop. In the
fourth model, we estimated the changes (relative to cotton) in June
within-field L. hesperus density expected when each of the other 16
crops is planted immediately adjacent to the quadrant of the field
in which the L. hesperus density was measured.

To quantify any potential relationship between the neighbor-
ing crops’ association with field-level and within-field L. hesperus
density, we performed a Bayesian linear regression of the esti-
mated effects of each crop on field-level L. hesperus density versus
the estimated effects of each crop on within-field L. hesperus den-
sity. Similarly to model 3, we used the parameter estimates and
estimated covariance matrix to draw samples of the crop-specific
parameter estimates from each model and repeatedly performed
the linear regression using each sample. Cotton was excluded
because it was used as the baseline crop in model 4, where the
identity of the immediately neighboring crop was a categorical
variable (as opposed to a continuous variable for each crop rang-
ing from 1 to 8, as in model 2); hence, no cotton-specific parameter
was estimated in model 4.

Specifically, we drew 10 000 samples of the other 16 crop-specific
field-level pest effect parameters from model 2 using the esti-
mated covariance matrix and assuming a multivariate normal
distribution. We repeated this sampling from model 4 for the
within-field pest effect parameters. For each of these 10 000 sam-
ples, we performed a Bayesian linear regression of the field-level
versus within-field L. hesperus parameters. We obtained 10 000
posterior samples from each of the 10 000 regressions and
discarded the first 5000 as burn-in. Non-informative N(0,100)

priors were used for the intercept and slope, along with a
non-informative inv-gamma(0.001, 0.001) prior for the variance.

2.2.6 Model 6: Association between landscape composition and
pesticide applications
We also quantified the association between which crops were
grown near a focal cotton field and the number of pesticide
applications targeting L. hesperus that were applied to that field.
We again employed a generalized additive mixed model, identical
in structure to model 1, but with the dependent variable being
the number of pesticide applications, during the entire growing
season, for which farmers nominated L. hesperus as one of the
targets.

2.2.7 Model 7: Relationship between L. hesperus effects and
pesticide application effects
Finally, to better understand and quantify any potential relation-
ship between the neighboring crops’ association with field-level
L. hesperus density and their association with the number of pes-
ticide applications targeting L. hesperus, we performed a Bayesian
linear regression, exactly like model 3, of the estimated effects of
each crop on the number of pesticide applications targeting L. hes-
perus versus the estimated effects of each crop on field-level June
L. hesperus density.

3 RESULTS
3.1 Model 1: Association between landscape composition
and yield
The estimated effects of each crop on cotton yield (specifically, the
estimated change in cotton yield associated with each additional
field of the eight adjacent fields planted to that crop) are displayed
in Fig. 1A. Three crops – grapes (−96.7± 95.5 kg ha−1), safflower
(−55.1± 51.4 kg ha−1) and potatoes (−40.8± 38.2 kg ha−1) – had
95% confidence intervals that were entirely negative, suggest-
ing that these crops, when planted adjacent to a cotton field,
were associated with decreased cotton yield. We performed
Moran’s I-test for spatial autocorrelation with the model’s resid-
uals; we found no evidence of spatial autocorrelation (I = 0.003,
P = 0.98).

3.2 Model 2: Association between landscape composition
and field-level L. hesperus density
The estimated effects of each crop on field-level L. hesperus
density (specifically, the estimated change in June L. hespe-
rus density associated with each additional field of the eight
adjacent fields planted to that crop), are displayed in Fig. 1B. Six
crops – grapes (0.38± 0.24 insects sweep−1), safflower (0.50± 0.13
insects sweep−1), pistachios (0.13± 0.12 insects sweep−1), onions
(0.11± 0.10 insects sweep−1), tomatoes (0.08± 0.05 insects
sweep−1) and almonds (0.12 0.10 insects sweep−1) – had 95%
confidence intervals that were entirely positive, suggesting that
these crops, when planted adjacent to a cotton field, were asso-
ciated with increased L. hesperus density. One crop – cotton
(−0.06± 0.02 insects sweep−1) – had a 95% confidence interval
that was entirely negative, suggesting that cotton, when planted
adjacent to a cotton field, was associated with decreased L. hespe-
rus density in the focal cotton field. We performed Moran’s I-test
for spatial autocorrelation with the model’s residuals; we found
little evidence of spatial autocorrelation (I = 0.021, P = 0.11).
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Figure 1. The estimated changes in cotton yield from model 1 (A) and June L. hesperus density from model 2 (B) associated with each additional field of
the eight adjacent fields planted to different crops. 95% confidence intervals are also displayed.

3.3 Model 3: Relationship between L. hesperus effects and
yield effects
Crops associated with increased L. hesperus density tended also to
be associated with decreased cotton yield, and crops associated
with decreased L. hesperus density tended also to be associated
with increased cotton yield. For 14 of the 17 crops, the direction
of the estimated effect of that crop on L. hesperus density and
the direction of the estimated effect of that crop on yield were
opposite.

The fit of the Bayesian linear regression of the estimated
effects of each crop on yield versus the estimated effects of
each crop on L. hesperus density is displayed in Fig. 2. The esti-
mated slope of that regression was −175.5 (kg ha−1)/(insects
sweep−1), with a 95% highest posterior density interval of (−306.7,
3.4). The posterior probability of a negative slope in the model
regressing estimated yield effects against estimated pest effects
was 97.42%.

3.4 Model 4: Association between landscape composition
and within-field L. hesperus density
The estimated effects of each crop on within-field L. hesperus
density (specifically, the estimated change in June L. hesperus
density in the quadrant of the field immediately adjacent to
each of these crops, compared with the case when another cot-
ton field – the baseline in the model – is immediately adjacent)
are displayed in Fig. 3. Six crops – lettuce (2.28± 0.83 insects
sweep−1), potatoes (0.56± 0.27 insects sweep−1), almonds (0.55
0.47 insects sweep−1), sugar beets (0.51± 0.45 insects sweep−1),
afalfa (0.29± 0.21 insects sweep−1) and tomatoes (0.18± 0.17
insects sweep−1) – had 95% confidence intervals that were
entirely positive, suggesting that these crops, when planted adja-
cent to a cotton field, were associated with increased L. hesperus
density in the portion of the cotton field nearest the adjoining
field. We performed Moran’s I-test for spatial autocorrelation
with the model’s residuals; we found weak evidence of spatial
autocorrelation (I = 0.002, P = 0.59).

Figure 2. The estimated changes in cotton yield from model 1 versus the
estimated changes in June L. hesperus density from model 2 for each of
the 17 crops, along with the fitted linear regression of the former against
the latter and the 95% highest posterior density interval bounds of the fit
(dashed lines).

3.5 Model 5: Relationship between field-level and
within-field L. hesperus effects
Crops associated with increased within-field L. hesperus density
in the immediately adjacent part of cotton fields tended also to
be associated with increased field-level L. hesperus density when
planted as any one of the eight crops adjacent to a cotton field.
For 12 of the 16 crops, the directions of the estimated effects of
that crop on within-field and field-level L. hesperus density were
the same.

The fit of the Bayesian linear regression of the estimated
field-level versus within-field L. hesperus effects is displayed in
Fig. 4. The estimated slope of that regression was 0.10 [(insects
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Figure 3. Estimated changes (and 95% confidence intervals) in June L.
hesperus density in field quadrants when various crops are planted in the
field immediately adjacent to that quadrant. All values are relative to the
situation in which cotton is grown in the adjacent field.

Figure 4. The estimated change in field-level June L. hesperus density from
model 2 versus the estimated changes in within-field June L. hesperus
density from model 4, along with the fitted linear regression of the former
against the latter and the 95% highest posterior density interval bounds of
the fit (dashed lines).

sweep−1 for each additional field, of the eight adjacent fields,
planted to that crop)/(insects sweep−1 when that crop is imme-
diately adjacent)], with a 95% highest posterior density interval
of (−0.08, 0.29). The posterior probability of a positive slope
(i.e. a positive association between field-level and within-field L.
hesperus effects) was 86.24%.

3.6 Model 6: Association between landscape composition
and pesticide applications
The estimated effects of each crop on the number of pesticide
applications targeting L. hesperus (specifically, the estimated
change in season-long pesticide applications targeting L. hesperus
associated with each additional field of the eight adjacent fields
planted to that crop) are displayed in Fig. 5A. Three crops had 95%
confidence intervals that were entirely positive, suggesting that
these crops were associated with an increased number of pesticide

applications targeting L. hesperus: safflower (0.97± 0.21 applica-
tions), grapes (0.62± 0.39 applications) and onions (0.30± 0.17
applications). One crop, cotton, was associated with fewer L.
hesperus applications when planted adjacent to a cotton field
(−0.06± 0.04 applications).

3.7 Model 7: Relationship between L. hesperus effects and
pesticide application effects
Crops associated with increased field-level L. hesperus density
tended also to be associated with an increase in the number of
pesticide applications targeting L. hesperus. For 14 of the 17 crops,
the directions of the estimated effects of that crop on field-level
L. hesperus density and the number of pesticide applications
targeting L. hesperus were the same.

The fit of the Bayesian linear regression of the estimated pesti-
cide use effects versus the estimated L. hesperus effects is displayed
in Fig. 5B. The estimated slope of that regression was 1.46 (appli-
cations)/(insects sweep−1), with a 95% highest posterior density
interval of (0.57, 2.38). The posterior probability of a positive slope
(i.e. a positive association between L. hesperus effects and pesticide
application effects) was 99.87%.

4 DISCUSSION
Using a large observational dataset containing historical records
of commercial cotton production in California, we explored and
quantified the relationships between crop landscape composition
and Lygus hesperus density, cotton yield and farmer pesticide use.
Various crops, when grown immediately adjacent to cotton, were
associated with changes in L. hesperus density, cotton yield and the
number of pesticide applications targeting L. hesperus.

Furthermore, crops that tended to be associated with increased
L. hesperus density tended also to be associated with decreased
yield – there was a 97.42% posterior probability of a negative rela-
tionship between each crop’s estimated effect on L. hesperus and
its estimated effect on yield. This result suggests a possible mecha-
nism by which crop landscape composition can affect cotton yield:
certain crops may increase the density of L. hesperus in nearby
fields, and those pests may in turn reduce yield through her-
bivory on the cotton crop. The mechanism by which nearby crops
increase L. hesperus densities in cotton fields may vary depend-
ing on the crop. For example, safflower, which was associated with
both higher L. hesperus and lower yield when grown near to a cot-
ton field, is known to be a favorable host for L. hesperus.20 There-
fore, it may attract large L. hesperus populations, which may spill
over into adjacent cotton fields. Furthermore, safflower dries down
and is harvested in early summer, at which time it ceases to be
a suitable host for L. hesperus. L. hesperus populations may then
move away from the safflower field and attack adjacent cotton
fields.20 Our results are consistent with other studies that have
shown increased L. hesperus densities in cotton fields when saf-
flower is planted nearby.19,22 Increased L. hesperus density associ-
ated with nearby grapes and onion fields has also been suggested
by a previous study,22 and the decrease in L. hesperus density asso-
ciated with nearby cotton fields is consistent with the findings of
several other studies.19,22

We found strong evidence that crops associated with increased
L. hesperus density were also associated with increased numbers
of pesticide applications targeting L. hesperus: there was a 99.87%
posterior probability of a relationship in this direction. In particu-
lar, for three crops for which we found strong evidence (i.e. entirely
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Figure 5. (A) The estimated change in the number of pesticide applications during the growing season targeting L. hesperus associated with each
additional field of the eight adjacent fields planted to different crops (model 6); 95% confidence intervals are also displayed. (B) The estimated changes in
the number of pesticide applications targeting L. hesperus from model 6 versus the estimated changes in June L. hesperus density from model 2 for each
of the 17 crops, along with the fitted linear regression of the former against the latter and the 95% highest posterior density interval bounds of the fit
(dashed lines).

positive 95% confidence intervals) of increased L. hesperus den-
sity – safflower, grapes and onions – we also found strong evi-
dence of increased numbers of pesticide applications targeting
L. hesperus. The strong trend for crops associated with increased
L. hesperus density also to be associated with increased numbers
of pesticide applications targeting L. hesperus suggests that the
changes in L. hesperus density were of great enough magnitude
to warrant detectable changes in farmer behavior. This highlights
the importance of considering landscape composition in deci-
sions about ranch layout and crop placement, as pesticide appli-
cations can be both costly to the farmer and damaging to the
environment.31

Using the results of model 1, we compared (a) the estimated
effects of various crops on yield when grown adjacent to a cotton
field during the same growing season with (b) the estimated
effects of the same crops on yield when grown in the same
field during the previous growing season. Using the results from
model 2, we repeated this comparison for estimated effects on
June L. hesperus density. In both cases, we found no significant
association between the same-season landscape effects and the
across-season crop rotation effects. These results suggest that the
mechanisms by which same-season landscape composition and
crop rotational histories affect cotton yield and L. hesperus density
may differ.

While it is widely appreciated that landscape composition sur-
rounding agricultural fields can affect the density of crop pests in
those fields, our study extends this knowledge by (a) quantifying
these effects on pest density, (b) quantifying the association
between landscape composition and yield, (c) revealing an asso-
ciation between landscape effects on yield and effects on pest
density that provides a plausible mechanism for the observed
yield changes and (d) demonstrating that landscape effects on
pest density were associated with changes in farmer pesticide
application behavior. Twelve of 16 crops were associated with

within-field and field-level changes in L. hesperus density that
were in the same direction, and there was an 86.24% poste-
rior probability of a positive association between within-field
and field-level L. hesperus effects. These parallel effects provide
increased confidence that pest movement may be driving yield
changes associated with landscape composition surrounding
cotton fields. The validity of landscape effects on L. hesperus
density is further corroborated by the increase in pesticide appli-
cations targeting L. hesperus that was observed in cotton fields
near to crops that were also associated with increased L. hesperus
pressure, because the increased pesticide use is likely a response
to increased density of L. hesperus. However, further research is
needed to confirm that this hypothesized mechanism is actually
responsible for the yield changes that we observed to be associ-
ated with neighboring crops. In addition, future reseach is needed
to study how landscape composition at wider spatial scales influ-
ences pest density, yield and pesticide use; in this study, owing to
data availability, we focused only on immediately adjacent crops.

The changes in yield associated with neighboring crops are likely
of economic significance to cotton growers. For example, yield
decreases of 96.7 and 55.1 kg ha−1 were associated with each addi-
tional adjacent grape and safflower field respectively. Compared
with the average cotton yield in our dataset of 1737.3 kg ha−1, this
translates into yield differences of 5.6 and 3.2% respectively. The
economic significance of these changes depends on various fac-
tors, including growers’ production costs and commodity prices.
However, these changes in yield are likely to be economically
significant, especially for growers working with very small profit
margins.

Any research methodology has inherent strengths and weak-
nesses which affect the type of questions for which the method is
best suited. A main drawback of our approach of analyzing a histor-
ical, observational dataset is that it makes formal causal inference
very challenging. This stems from the fact that our analyses rely
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on observational data, where, unlike in a controlled experiment,
it is not possible definitively to prove that there was not another,
unmeasured factor that actually caused the change in the variable
of interest. Some factors, such as soil conditions and the amount
of irrigation used on each field, could also affect cotton crop per-
formance but were not a part of this dataset and therefore not
included in our analyses. Despite this drawback, a major benefit of
our approach is that it allowed us to use a large dataset to explore
a question that would be very difficult to study experimentally.
Experimentally manipulating landscape composition is extremely
difficult, as it requires a researcher to have a large geographic area
under experimental control. While small test plots may be more
tractable, they reduce the realism of the experiment, as large spa-
tial scales are needed to capture the spatial dynamics of highly
mobile pests.

Optimizing the layout of crops across a landscape is one way in
which farmers can reduce crop damage from insect pests and, in
turn, increase yield and reduce pesticide use. Such optimizations
may play an important part in our agricultural future, as the need
to increase yield and the desire to reduce pesticide use become
increasingly urgent. Here, we have shown how large datasets
from commercial agriculture can be aggregated and applied to
quantify the effects of landscape composition on pest densities
and yield – information that is critical in order to made data-driven
decisions about optimal crop layout.
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