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Abstract. Secondary pest outbreaks occur when the use of a pesticide to reduce densities
of an unwanted target pest species triggers subsequent outbreaks of other pest species.
Although secondary pest outbreaks are thought to be familiar in agriculture, their rigorous
documentation is made difficult by the challenges of performing randomized experiments at
suitable scales. Here, we quantify the frequency and monetary cost of secondary pest
outbreaks elicited by early-season applications of broad-spectrum insecticides to control the
plant bug Lygus spp. (primarily L. hesperus) in cotton grown in the San Joaquin Valley,
California, USA. We do so by analyzing pest-control management practices for 969 cotton
fields spanning nine years and 11 private ranches. Our analysis uses statistical methods to
draw formal causal inferences from nonexperimental data that have become popular in public
health and economics, but that are not yet widely known in ecology or agriculture. We find
that, in fields that received an early-season broad-spectrum insecticide treatment for Lygus,
20.2% 6 4.4% (mean 6 SE) of late-season pesticide costs were attributable to secondary pest
outbreaks elicited by the early-season insecticide application for Lygus. In 2010 U.S. dollars,
this equates to an additional $6.00 6 $1.30 (mean 6 SE) per acre in management costs. To
the extent that secondary pest outbreaks may be driven by eliminating pests’ natural enemies,
these figures place a lower bound on the monetary value of ecosystem services provided by
native communities of arthropod predators and parasitoids in this agricultural system.

Key words: causal inference; cotton; ecosystem services; indirect effects; integrated pest management;
Lygus spp.; potential outcomes; San Joaquin Valley, California, USA; secondary pest outbreak.

INTRODUCTION

Secondary pest outbreaks, in which the use of a

pesticide to reduce densities of an unwanted target pest

species triggers subsequent outbreaks of other pest

species, are a well-known phenomenon in agriculture

(Ripper 1956, Hardin et al. 1995, Dutcher 2007). Several

mechanisms can drive secondary pest outbreaks, includ-

ing reduction of natural enemies that suppress densities

of non-target pests, physiological changes in the plant or

non-target species (hormoligosis), and reductions in

competing arthropod species (Ripper 1956, White 1984,

Hardin et al. 1995). Secondary pest outbreaks can be

detrimental to the welfare of the farmer, as they may

reduce profit by reducing yield and by necessitating

costly additional pesticide applications (Horton et al.

2005, Dutcher 2007). Secondary pest outbreaks are also

of interest from the perspective of ‘‘ecosystem services,’’

because quantifying the loss in profit attributable to

secondary pest outbreaks may arguably provide a lower

bound on the monetary value of the regulation of

economically injurious pest species provided by commu-

nities of natural enemies.

While the existence of secondary pest outbreaks is

uncontroversial, rigorous documentation of secondary

pest outbreaks is difficult (Hardin et al. 1995, Dutcher

2007). Experimental demonstration of secondary pest

outbreaks is often stymied by considerations of scale,

because well-replicated, controlled experiments are often

(but not always) infeasible at the spatial and temporal

scales at which the ecological mechanisms driving or

preventing secondary pest outbreaks operate. Conse-

quently, most evidence for secondary pest outbreaks

comes from so-called ‘‘observational data’’ collected

outside an experimental framework. With traditional

analyses, observational data do not provide the conclusive

evidence for causation that experimental data allow.

This article investigates secondary pest outbreaks

elicited by management for the plant bug Lygus spp. in

cotton grown in the San Joaquin Valley of California,

USA. Lygus is a key pest of cotton in California and

throughout the southwestern United States (Leigh et al.

1988, Leigh and Goodell 1996). Management of Lygus

in cotton is thought to provide a prime candidate for

secondary pest outbreaks, because cotton harbors a rich

community of arthropod herbivores and natural ene-

mies, and because, until very recently, only nonselective,

broad-spectrum pesticides have been available for Lygus
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control (Rao et al. 2003, Dutcher 2007). Indeed, some of

the most convincing experimental demonstrations of
secondary pest outbreaks that do exist come from early

studies of Lygus control in California cotton, where
repeated and heavy applications of broad-spectrum

insecticides to control Lygus elicited outbreaks of
armyworms and other lepidopteran larvae (Falcon et
al. 1968, 1971; Eveleens et al. 1973). More recently,

informal observations have suggested suggest that,
under contemporary management practices, early-sea-

son insecticide applications to control Lygus can also
trigger secondary pest outbreaks of other herbivorous

arthropods such as spider mites (Tetranychus spp.)
(University of California 1996).

Here, we investigate secondary pest outbreaks in
California cotton with an ‘‘ecoinformatics’’ approach.

With the generous cooperation of four professional pest-
control advisors we have assembled data detailing

management practices in cotton fields operated by 11
different ranches from 1997 through 2008. We have

assembled these data in hopes that the breadth of
management strategies that they span will allow us to

measure agriculturally meaningful effects at scales that
are pertinent to contemporary agriculture. We analyze

these data for secondary pest outbreaks using statistical
methods for causal inference from observational data
that have been developed in the context of public health

and economics. To our knowledge, these causal-infer-
ence methods have not yet penetrated the ecological or

agricultural literature (Plowright et al. 2008).
Thus, this paper has two primary goals. Our first goal

is to determine if secondary pest outbreaks are caused by
the application of contemporary broad-spectrum insec-

ticides for Lygus pests in California cotton, and, if so, to
quantify the monetary cost of managing those out-

breaks. Our second goal is to introduce statistical
methods for causal inference from observational data

that are not yet widely known among ecologists. The
remainder of this paper is structured as follows. We first

introduce the Lygus–cotton system in more depth, and
provide details about the data that we have assembled.

We then provide a brief introduction to causal-inference
statistics, and offer citations for further reading. We

then use these causal-inference methods to estimate the
effect of early-season insecticide treatment for Lygus on

the number and cost of late-season insecticide applica-
tions for non-Lygus pests. Readers uninterested in the
causal-inference framework may bypass the mathemat-

ical sections without loss.

LYGUS IN COTTON

Introduction to the system

Cotton pest management in California’s San Joaquin

Valley is predicated upon the judicious and sparing use
of pesticides so as to maximize the pest management

services contributed by an abundant and diverse
community of natural enemies (University of

California 1996). The primary threats to cotton

production due to herbivorous arthropods change over

the course of the growing season. Lygus spp., predom-

inantly L. hesperus Knight (Hemiptera: Miridae) but

also occasionally L. elisus Van Duzee (Hemiptera:

Miridae), damage cotton by feeding on young flower

buds, potentially eliciting their abscission. This damage

is of most concern early during the reproductive phase

of cotton’s growth (late May through June), when

cotton’s ability to compensate for loss of flower buds

appears to be particularly weak (J. A. Rosenheim,

unpublished data; see also Musser et al. [2009] for a

parallel result). Because this window of crop sensitivity

to Lygus is relatively brief, a single application of

insecticides often suffices to suppress Lygus below

damaging levels until the plant attains a developmental

stage with enhanced capacity to compensate for loss of

flower buds. L. hesperus and L. elisus are usually not

distinguished in pest management.

Later during the growing season other pests can

become more significant. Spider mites (Tetranychus spp.

Dufour [Acari: Tetranychidae]) are especially important

during the hottest months (July, August), when their

populations can grow explosively. Armyworms (mostly

Spodoptera exigua [Hübner] [Lepidoptera: Noctuidae])

and other lepidopteran larvae are also more likely to

emerge as pests late in the growing season (July,

August). Aphids (Aphis gossypii Glover [Hemiptera:

Aphididae]) are primarily a concern late during the

growing season as well (September–October), because

their populations grow most rapidly under cooler fall

temperatures and because their excreta (‘‘honeydew’’)

can contaminate cotton lint, which is exposed once

mature cotton fruits (‘‘bolls’’) start to open as harvest

approaches.

Spider mite, armyworm, and cotton aphid popula-

tions are potentially regulated by a diverse community

of natural enemies in cotton fields. Generalist predators,

including Orius spp. Wolff (Hemiptera: Anthocoridae),

Geocoris spp. Fallen (Hemiptera: Lygaeidae), Nabis spp.

Latreille (Hemiptera: Nabidae), Zelus spp. Fabr.

(Hemiptera: Reduviidae), a complex of ladybeetles

(family Coccinellidae), and a complex of common green

lacewings (family Chrysopidae) are consumers of each

of these herbivores. In addition, each herbivore has a

complex of more specialized predatory and parasitic

exploiters: spider mites are attacked by specialist

predators, including Frankliniella occidentalis (Per-

gande) (Thysanoptera: Thripidae), Scolothrips sexmacu-

latus (Pergande) (Thysanoptera: Thripidae), and a

complex of predatory mites (family Phytoseiidae);

armyworms are attacked by a complex of hymenopteran

parasitoids; and aphids are attacked by the parasitoid

Lysiphlebus testaceipes (Cresson) (Hymenoptera:

Braconidae) and a complex of predatory hover flies

(family Syrphidae) and midges (family Cecidomyiidae)

(van den Bosch and Hagen 1966, University of

California 1996). The use of broad-spectrum insecticides

to control early-season Lygus populations may impose
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mortality on any or all members of this diverse

community of natural enemies.

Database assembly

We compiled data from four pest-control advisors

(PCAs) who manage cotton for private ranchers in

California’s San Joaquin Valley. Each PCA provided

data for 1–4 unique ranches and 5–10 years. Overall, our

data span 11 ranches, and for each ranch we have data

for some subset of the years from 1997–2008.

Our data consist of scouts’ reports, pesticide applica-

tions, including all insecticides and acaricides, targets for

each pesticide application, and yields for multiple fields

at each ranch. (Here and throughout, we use the term

field to refer to a single-year’s planting on a physical

parcel of land, not as the land itself.) Scouting data

typically include weekly or twice-a-week counts of the

average number of Lygus individuals captured in

multiple standard sweep-net samples (50 sweeps).

Some PCAs also measured loss of cotton squares (flower

buds) due to shedding. Pests other than Lygus were not

routinely sampled. We calculated the monetary cost of

each late-season pesticide application for secondary

pests by adding the price of the pesticide and standard

application costs, using cost data from early 2010.

Detailed methods for our cost calculations appear in

Appendix A.

Because our data do not include secondary pest

densities, we use the number of late-season pesticide

applications for secondary pests as a proxy for secondary

pest outbreaks. Instead of attempting to estimate the

effects of broad-spectrum insecticide applications

throughout the growing season, we simplified the analysis

by partitioning the growing season into early and late

phases, using 1 July as the first day of the ‘‘late’’ growing

season. We chose 1 July as our separation point because

cotton is most vulnerable to yield loss from Lygus

herbivory from planting through June, and hence it is

during this period when farmers may need to suppress

Lygus populations aggressively. Thus, we will specifically

ask how insecticide application for Lygus before 1 July

affects the number of pesticide applications for non-

Lygus pests after 1 July.

Late in our study period some fields were treated with

the Lygus-selective insecticide flonicamid, which sup-

presses populations of Lygus and cotton aphids, but has

few effects on beneficial insects. Because flonicamid is

not expected to impact native arthropod communities as

severely as broad-spectrum insecticides, fields treated

with flonicamid were excluded from the analysis.

CAUSAL INFERENCE FOR OBSERVATIONAL DATA

In this section we introduce the statistical methods for

drawing formal causal inferences from observational

data. Causal-inference methods have become popular in

scientific disciplines that study human welfare—namely,

public health (Little and Rubin 2000) and economics

(Imbens and Wooldridge 2009, Gangl 2010)—where it is

unfeasible, unethical, or impractical to subject human

subjects to randomized, controlled experiments. Because

causal-inference methods are relatively unknown in the

natural sciences, we provide a basic introduction to the

underlying logic here. Of course, causal-inference

methodology extends far beyond the material presented

below. Readers interested in a deeper exposition of

causal-inference methods may consult Imbens and

Wooldridge (2009) and Gangl (2010); we find the former

to be particularly readable yet comprehensive.

Potential outcomes and treatment effects

We adopt the perspective of defining causal effects via

potential outcomes (also referred to as ‘‘counterfac-

tuals’’; Rubin 2005), and consider only the simple case

of estimating a causal effect with a binary treatment and

a single outcome. This scenario is illustrated in Table 1.

Consider estimating the causal effect of applying an

early-season broad-spectrum insecticide for Lygus (the

treatment) on the number of late-season insecticide

applications for secondary pests (the response). In

notation, let A 2 f0, 1g denote the treatment, with A

¼ 1 indicating early-season insecticide application for

Lygus and A ¼ 0 indicating no such insecticide

application. Let Y denote the response. Now envision

the value of Y that would result if a field receives

treatment A ¼ 0, and the value that would result if the

field receives treatment A ¼ 1. Denote these so-called

potential outcomes as Y.(0) and Y.(1), respectively.

Because each field receives only one treatment, we are

not able to observe both Y.(0) and Y.(1) for any given

field; instead, we only observe one potential outcome for

each field.

For a given field, define the unit-level treatment effect

as the simple difference Y.(1) � Y.(0) (Table 1). Of

course, this treatment effect is never observable for any

field. We define population-level treatment effects as

averages, or expectations, of the unit-level treatment

effects. We will examine two population-level treatment

effects. The average treatment effect (ATE) is just the

expectation of the unit-level treatment effects, that is,

ATE ¼ E½Y.ð1Þ � Y.ð0Þ� ¼ E½Y.ð1Þ� � E½Y.ð0Þ�: ð1Þ

In the context of cotton, we can think of the ATE as the

expected difference in the average response if all fields

were treated for early-season Lygus, vs. the average

response if no fields were treated for early-season Lygus.

In addition to the ATE, we can also define the

population-level treatment effect for the subset of fields

that actually were treated for early-season Lygus. This

quantity is typically referred to as the average treatment

effect on the treated (ATT), and is defined as

ATT ¼ E½Y.ð1Þ � Y.ð0Þ jA ¼ 1�

¼ E½Y.ð1Þ jA ¼ 1� � E½Y.ð0Þ jA ¼ 1�: ð2Þ

The ATT is a more appropriate measure of the causal

effect than the ATE if it does not make sense to
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contemplate the potential outcomes under treatment A¼
1 for untreated fields. Here, we argue that the ATT is the

most appropriate estimator of the average causal effect

of early-season Lygus treatment in cotton, because

treating a cotton field with low Lygus densities bears

questionable relevance toward estimating secondary pest

outbreaks in fields with sufficient Lygus densities to

merit insecticide treatment.

Before proceeding, we note that although Y.(1) �
Y.(0) is the most commonly considered treatment

effect, other treatment effects can be defined. For

example, we could consider the treatment effect to be

the proportional change Y.(1)/Y.(0). One could also

consider different population-level summaries of treat-

ment effects, such as the median unit-level treatment

effect, or the proportion of units for which Y.(1) .

Y.(0).

Estimating treatment effects from data

We now discuss estimating population-level treatment

effects with data. Although we are ultimately interested

in estimating treatment effects with observational data,

it is helpful to first discuss estimating the ATE in the

context of randomized experiments.

All of the arguments below require a technical

assumption that the outcome observed equals the

potential outcome for the treatment received. That is,

for a¼ 0, 1, if the unit received treatment A¼ a, then the

observed outcome Y ¼ Y.(a). D. B. Rubin and

colleagues call this the ‘‘stable-unit treatment value

assumption’’ (SUTVA; Rubin 1980). The primary

implication of SUTVA is that the outcome observed

for any unit is not influenced by the treatment received

by any other unit. In essence, SUTVA is an assumption

of independence among the data.

In an experiment, randomized treatment assignment

implies that the potential outcomes Y.(0) and Y.(1) are

independent of A for each unit. This independence plus

SUTVA implies that the difference between the means of

the treated and untreated groups is an unbiased

estimator of the ATE. To see this, let na be the number

of units that received treatment A ¼ a, and write the

expectation of the difference between the treatment-

group means as

E
1

n1

X

i:Ai¼1

Yi �
1

n0

X

i:Ai¼0

Yi

" #
¼ E½Y jA ¼ 1� � E½Y jA ¼ 0�:

ð3Þ

Now, it suffices to show that E [Y jA ¼ a], the expected

outcome of a unit that received treatment A¼ a, is equal

to E[Y.(a)], the expected potential outcome under A¼a

for all units. The proof proceeds as

E½Y jA ¼ a� ¼ E½Y.ðaÞ jA ¼ a� ¼ E½Y.ðaÞ� ð4Þ

where the first equality follows by SUTVA, and the

second by independence of the potential outcomes and

the treatment under randomized treatment assignment.

Plugging Eq. 4 into Eq. 3 yields

E½Y jA ¼ 1� � E½Y jA ¼ 0� ¼ E½Y.ð1Þ� � E½Y.ð0Þ�
¼ ATE:

In observational studies, treatment assignment is not

random. Thus, the treatment assignment may not be

independent of the potential outcomes, and thus the

average response for fields that received treatment A¼ a

may not be an unbiased estimate of the expected

potential outcome under A ¼ a across all fields. In

particular, nonrandom treatment assignment introduces

the possibility that confounding with one or more

additional variables may produce spurious (i.e., non-

causal) correlations between treatment and response. In

cotton, such non-causal correlations may arise from

(among other confounders) variation in PCAs’ tenden-

cies to recommend insecticide applications, and/or

variation in the vigor of the cotton crop (more vigorous

crops may attract arthropod herbivores of several

species). This potential for spurious correlations between

treatment A and response Y in observational data makes

it impossible to assign a causal interpretation to the

simple difference between treated and untreated fields.

How can we construct unbiased estimators of average

treatment effects when the treatment assignment is not

random? The key insight is this. Unbiased estimators of

causal effects are obtainable if we measure a set of

possible confounders, denoted X, such that given

knowledge of X, the treatment assignment is indepen-

dent of the potential outcomes. The assumption that A is

conditionally independent of Y.(0) and Y.(1) given X is

TABLE 1. The potential outcomes framework for causal inference. Table adapted from Rubin (2005).

Experimental
unit (field)�

Treatment
received Covariates

Potential outcomes

Unit-level causal effect Population-level causal effectsA ¼ 1 A ¼ 0

1 A1 X1 Y.

1 ð1Þ Y.

1 ð0Þ Y.

1 ð1Þ – Y.

1 ð0Þ
..
. ..

. ..
. ..

. ..
. ..

.
ATE ¼ E [Y.(1) � Y.(0)]

i Ai Xi Y.

i ð1Þ Y.

i ð0Þ Y.

i ð1Þ � Y.

i ð0Þ
..
. ..

. ..
. ..

. ..
. ..

.
ATT ¼ E [Y.(1) � Y.(0) jA ¼ 1]

n An Xn Y.

n ð1Þ Y.

n ð0Þ Y.

n ð1Þ � Y.

n ð0Þ

Notes: ATE stands for average treatment effect; ATT stands for average treatment effect on the treated fields.
� ‘‘Field’’ refers to a single-year’s planting on a physical parcel of land, not the land itself.
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referred to as the ‘‘no unmeasured confounders’’

assumption, or (more awkwardly, but more accurately)

the ‘‘unconfoundedness’’ assumption.

We present one method for estimating causal effects

under unconfoundedness below. First, however, we

discuss the unconfoundedness assumption. Ultimately,

unconfoundedness is an assumption about the science of

the process being studied. Validation of the unconfound-

edness assumption solely via data is (to our knowledge)

impossible. As such, the unconfoundedness assumption

requires careful scrutiny and thorough knowledge of the

system. Moreover, the unconfoundedness assumption

could easily be controversial, as two reasonable scientists

could reach different conclusions regarding whether a set

of covariates fully removes confounding between treat-

ment and potential outcomes (Imbens and Wooldridge,

2009). Nonetheless, as Imbens and Wooldridge (2009:23)

state, ‘‘there are many cases where there is no clearly

superior alternative [to the unconfoundedness assump-

tion], and the only alternative is to abandon the attempt

to get precise inferences.’’ Pearl (1995, 2000; summarized

in Jewell [2004]) discusses graphical methods for identi-

fying confounders, and we use these methods below.

A host of methods have been developed for estimating

causal effects under the assumptions of SUTVA and

unconfoundedness (Imbens and Wooldridge, 2009), and

it is beyond the scope of this article to review them all

here. Here, we estimate causal treatment effects using

regression. Let ma(X, ca) denote regression models for

the observed outcome under A ¼ a, that is, ma(X, ca) ¼
E [Y jX, A ¼ a] where ca is a vector of parameters. The

models ma may be any type of regression, including a

multiple regression, a generalized linear model, or a

nonparametric regression.

To derive an unbiased estimator for ATE or ATT, it

suffices to show that ma(X, ca) equals to the expected

potential outcome Y.(a) given X, that is,

maðX; caÞ ¼ E½Y.ðaÞ jX� ð5Þ

for a ¼ 0, 1. The desired equality follows by

maðX; caÞ ¼ E½Y jX;A ¼ a� ¼ E½Y.ðaÞ jX;A ¼ a�

¼ E½Y.ðaÞ jX�

where the first equality follows by definition, the second

by SUTVA and the third by unconfoundedness. Taking

expectations of Eq. 5 with respect to X yields EX [ma(X,

ca)] ¼ E[Y.(a)].

Thus, to estimate causal treatment effects using

regression, we build regression models m0(X, c0) and

m1(X, c1) that regress the observed response Y on the

confounders X using the data that received treatments A

¼ 0 and A¼ 1, respectively. Then, an unbiased estimator

for the ATE is

dATE ¼ 1

n

Xn

i¼1

m1ðXi; ĉ1Þ � m0ðXi; ĉ0Þf g ð6Þ

and an unbiased estimator for the ATT is

dATT ¼ 1

n1

X

i:Ai¼1

m1ðXi; ĉ1Þ � m0ðXi; ĉ0Þf g: ð7Þ

The estimators above are not identical to the naive

estimate that one would obtain by regressing Y on X and

A, and then extracting the partial regression coefficient

associated with A. In general, such a partial regression

coefficient does not permit a causal interpretation.

Standard errors for dATE and dATT can be approximated

with a nonparametric bootstrap.

Before moving on, we note that each term in the

summations of Eqs. 6 and 7 is a difference between a

fitted value from one regression model and a prediction

from a different regression. For example, if Ai¼ 1, then

m1(Xi, ĉ1) is a fitted value and m0(Xi, ĉ0) is a prediction.

Hence, standard cautions apply regarding predictions

with regression models. In particular, regression predic-

tions are only trustworthy for confounder values that lie

within the support of the fitted regression model. Thus,

the causal-effect estimators above are only reliable to the

extent that the A ¼ 0 and A ¼ 1 treatment groups have

comparable distributions of confounders, or that we are

willing to extrapolate the fitted regression models to

values of the confounders beyond the support of the

fitted models. This makes intuitive sense: if there is a

confounder with values that do not overlap for the A¼1

and A ¼ 0 groups, then separating the effect of the

treatment from the confounder is impossible. Imbens

and Wooldridge (2009) have also noted that, in

treatment vs. control studies, it is common for the

confounder values for the untreated or control (A ¼ 0)

group to span a broader range than the confounder

values for the treated (A ¼ 1) group. When this occurs

(as it does to some extent for our data), then predicting

Y.(0) for treated units requires less extrapolation than

predicting Y.(1) for untreated units. Hence, because

only dATE requires predicting Y.(1) for untreated units,

the ATT can be estimated more robustly than the ATE.

ANALYSIS OF SECONDARY PEST OUTBREAKS

Identification of confounders

We identified confounders using the causal-graph

methodology developed by Pearl (1995, 2000) and

summarized in Jewell (2004) (see Plowright et al.

(2008) for another ecological example). A causal graph

consists of a network of putative cause-and-effect

relationships between variables. Once a causal graph

has been suggested, a set of covariates can be identified

that, once controlled for, remove the confounding

between the cause and effect variables of interest. (A

full discussion of how causal graphs can be used to

identify confounders is beyond the scope of this article.

In brief, confounding arises via ‘‘unblocked backdoor

paths’’ that connect the putative cause and effect

variables. A complete set of confounders is any set that
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eliminates all unblocked backdoor paths.) Our causal

graph appears in Fig. 1.
The causal graph in Fig. 1 embodies the assumptions

on which our analysis rests, and so we justify those

assumptions here. Both year and cotton type (Acala vs.
Pima) are assumed to affect densities of all pests
throughout the growing season. (In Fig. 1, year and

cotton type are separate nodes, but we combine them
because they are topologically equivalent. PCA and
ranch are combined for the same reason.) Early-season

Lygus densities affect early-season Lygus-insecticide
applications, both of which in turn affect late-season
Lygus densities. The same is true for non-Lygus pests.

Neighboring source crops for Lygus such as safflower
affect both early-season Lygus densities and preemptive
Lygus insecticide treatment. Early-season Lygus feeding

also triggers the shedding of cotton squares, which is

incorporated into the PCA’s treatment decisions and is

exacerbated by whether the previous year’s crop was
fertilized with phosphorous.

For several reasons, both early and late-season

insecticide application for Lygus may be likely to
increase the chance of early and late-season pesticide
application for non-Lygus pests, and vice versa. This

may be because, first, the cost of applying several
pesticides simultaneously as part of a ‘‘tank mix’’ is less
than the cost of applying the same pesticides separately.

Second, early-season application of broad-spectrum
pesticides for Lygus may decrease the abundance of
natural enemies, or enhance the vigor of cotton plants

(White 1984), both of which may in turn impact the
densities of non-Lygus pests. Finally, both PCAs and
farmers may be more or less aggressive in their

management styles.

FIG. 1. A causal graph for the Lygus–cotton system. Each arrow is a ‘‘directed edge’’ that represents a putative cause-and-effect
relationship between variables. Nodes in boxes are the putative treatment (early-season insecticide applications for Lygus) and
response (late-season insecticide applications for secondary pests) variables. Nodes in ovals form a set of confounders for the causal
relationship between treatment and response. ‘‘PCA’’ stands for pest-control advisor; ‘‘Ranch’’ represents the ranches in which
cotton fields were operated; ‘‘square’’ refers to cotton flower buds.
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We reiterate that our causal graph in Fig. 1 is a

hypothesis, and the causal relationships that it embodies

are open to debate. It is our best working hypothesis,

however, and it is the hypothesis on which our analysis

below rests. Using the causal graph in Fig. 1, a set of six

covariates can be identified that confound the relation-

ship between early-season insecticide application for

Lygus and late-season pesticide application for second-

ary pests. These confounders are year, cotton type,

early-season Lygus density, early-season pesticide treat-

ments for non-Lygus pests, PCA, and ranch. In addition

to these six covariates, we also include a PCA 3 year

interaction, because there is evidence that the PCAs’

management strategies changed across the years.

Importantly, this set of confounders is identical regard-

less of the particular mechanism that drives secondary

pest outbreaks (e.g., reduction in natural enemies,

changes in cotton physiology, or reduced competition).

Data preparation

We calculated early-season Lygus density as the

average number of Lygus individuals collected in a

standard sweep-net sample, averaged across all sampling

occasions prior to 1 July or the first insecticide

application for Lygus, whichever came first. We

excluded data from ranches with �3 early-season

Lygus applications, or from PCA 3 year combinations

with 0 or 1 early-season Lygus applications, as in our

judgment these ranches or PCA3year combinations did

not have sufficient data to estimate regression parame-

ters reliably. Cotton type was occasionally not recorded,

and so we allowed three levels of the categorical variable

for cotton type: Acala (56%), Pima (33%) and unknown

(11%). We did not include fields planted in hybrid (Pima

3 Acala) cotton (,0.5%). All told, we used n ¼ 969

unique fields for our regression modeling, spanning 11

ranches and 9 years. These fields ranged in size from 2.1

to 593.0 acres (0.8–240.0 ha), with a median size of 76.0

6 2.7 acres (approximate SE; 30.8 6 1.1 ha). Of these

fields, n1 ¼ 217 received early-season insecticide appli-

cation for Lygus.

Regression modeling

We used Poisson regression models because our

response variable was a count. We did not add or

remove confounders from X based on their statistical

significance, because our choice of variables to include in

X is based on our hypothesized causal graph. Indeed,

variable selection in regression models for causal

inference is an area of active research (Imbens and

Wooldridge 2009).

We estimated the statistical uncertainty in our

estimated treatment effects by a nonparametric boot-

strap with 500 bootstrap data sets. To avoid bootstrap

data sets with ranches or PCA3 year combinations with

too few instances of treated or untreated fields, we used

a conditional resampling scheme, in which records were

resampled within each ranch–year–treatment combina-

tion. Consequently, bootstrap inferences pertain only to

these specific ranches and years. Moreover, the boot-

strap relies on the assumption that late-season, non-

Lygus pesticide applications are conditionally indepen-

dent across fields within each ranch and year, given

treatment and covariates. To evaluate this assumption

quantitatively, we estimated the correlation among

residuals for fields from the same ranch and year, using

a Pearson correlation coefficient and deviance residuals

from the Poisson regressions.

We also analyzed late-season pesticide applications

for three of the most common non-Lygus pests: aphids,

mites, and armyworms. In each case, we only used data

from ranches and PCA3 year combinations in which at

least one late-season pesticide application for the

particular secondary pest was recorded for both possible

early-season Lygus treatments. We used a subset of 805,

666, and 453 records for our aphid, mite and armyworm

analyses, respectively.

Throughout, all monetary values and their SEs are

rounded to the nearest tenth of a dollar.

RESULTS

Table 2 summarizes the estimated causal effects of

early-season insecticide application for Lygus. Fields

that were treated for early-season Lygus (A¼ 1) received

an average of 2.25 (SE ¼ 0.13) late-season pesticide

treatments for non-Lygus pests, incurring an average

cost of US$29.60 6 $1.90 per acre (mean 6 SE)

(US$73.10 6 $4.70/ha). We estimate that, had those

same fields not been treated for early-season Lygus, they

would have required dATT ¼ 0.45 (¼ 20.2%) fewer late-

season non-Lygus pesticide applications (bootstrap SE¼
0.10; 95% bootstrap CI ¼ (0.23, 0.64); one-tailed

bootstrap P , 0.002). We estimate the cost of these

late-season pesticide applications caused by early-season

treatment for Lygus at US$6.00 per acre (SE¼ $1.30 per

acre; 20.2% of the total cost) (US$14.80 6 $3.20/ha).

Across all fields, the estimated average treatment

effect (ATE) is negligible (¼ 0.00; bootstrap SE ¼ 0.11;

95% bootstrap CI ¼ (�0.21, þ0.22)). The ATE is less

than the ATT because the estimated causal effect of

early-season Lygus treatment for untreated fields is

negative (�0.14). That is, if untreated fields had been

treated, we estimate that they would have required fewer

late-season secondary pesticide applications. Although

the estimated causal effects for treated and untreated

fields are not equal in magnitude, the two effects cancel

out in the population-level ATE because only one-

quarter of the fields in our data set were treated for

early-season Lygus.

Aphids, mites, and armyworms comprised the pre-

ponderance (91%) of non-Lygus targets for late-season

pesticides. Species-level analyses suggest that, in treated

fields, early-season treatment for Lygus increased the

number of late-season pesticide applications for aphids,

mites, and armyworms by 0.28 (bootstrap SE ¼ 0.06),

0.09 (bootstrap SE ¼ 0.11), and 0.09 (bootstrap SE ¼
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0.04), respectively (Table 3). (With Poisson regression,

estimated treatment effects for individual species do not

necessarily add together to equal the total treatment

effect.) Considering the statistical precision of these

estimates, the estimated treatment effects are roughly

proportional to the relative frequencies with which each

species occurred as a late-season target across all fields.

Estimated causal effects can be visualized by plotting

predicted outcomes with and without early-season

Lygus treatment (Fig. 2). This plot suggests that the

effect of early-season Lygus insecticide is not uniform,

but depends subtly on the expected number of late-

season secondary-pest treatments. Early-season Lygus

treatment appears to have the largest effect on

secondary pest outbreaks when the expected number

of late-season secondary pest treatments is small (1–4),

but has a smaller (and possibly reversed) effect when the

expected number of late-season secondary pest treat-

ments is large (.6). The banding in Fig. 2 occurs

because categorical predictors (ranch, PCA, year, and

cotton type) were the dominant predictors in regression

model m0, while average early-season Lygus density

explained more of the variation in the response in model

m1. Although the regression models m0 and m1 are not

the focus of our analysis, we provide summaries of these

models in Appendix B. Analysis of deviance residuals

from Poisson regressions suggested a mild but statisti-

cally significant correlation among fields from the same

ranch and year (common Pearson’s correlation coeffi-

cient ¼ 0.17, P , .001). Neither model m0 nor m1

suggested overdispersion relative to a Poisson distribu-

tion.

DISCUSSION

Using ATT as the most relevant measure of causal

effects, this analysis suggests that, for the cotton fields in

this study, an early-season, broad-spectrum insecticide

treatment for Lygus elicited secondary pest outbreaks

that were responsible for 20% of late-season non-Lygus

pesticide applications. Late-season pesticide applications

to manage secondary pest outbreaks cost US$6.00 per

acre (US$14.80/ha), on average. To the extent that we

can determine, secondary outbreaks of aphids, mites,

and armyworms occurred in roughly similar proportion

to the overall frequencies with which each species

appeared as a late-season pest.

We consider ATT to be a better measure of the causal

effect of early-season insecticide treatment for Lygus

than ATE. The ATT is an estimate of the causal effect of

early-season Lygus treatment in fields that were actually

treated. The ATE is an estimate of the overall causal

effect if all fields had been treated for Lygus regardless of

early-season conditions. Although the ATE is still

informative, the ATT is a more relevant measure of

TABLE 3. Pesticide applications for non-Lygus pests on or after 1 July, by species.

Pests

Treated fields (A ¼ 1) All fields

ATT (SE) Total (SE) ATE (SE) Total (SE)

Aphids� 0.28 (0.06) 1.14 (0.07) 0.00 (0.06) 1.00 (0.03)
Mites� 0.09 (0.11) 0.45 (0.05) 0.04 (0.06) 0.40 (0.02)
Armyworms§ 0.09 (0.04) 0.45 (0.05) �0.10 (0.07) 0.40 (0.03)

Note: ATE stands for average treatment effect; ATT stands for average treatment effect on the
treated fields.

� ATT and ATE calculated for a subset of n ¼ 805 data records.
� ATT and ATE calculated for a subset of n ¼ 666 data records.
§ ATT and ATE calculated for a subset of n¼ 453 data records.

TABLE 2. Estimated effects of early-season, broad-spectrum insecticide application for Lygus on
late-season pesticide applications for non-Lygus pests.

Variable Treated fields (A ¼ 1) All fields

No. late-season applications� 2.25 (0.13) 2.05 (0.07)
Estimated causal effect ATT ¼ þ0.45 (0.10) ATE ¼ �0.00 (0.11)
Estimated causal effect, percentage basis 20.2% (4.5%) �0.2% (5.4%)
Average total cost in US$�
Per acre $29.60 ($1.90) $27.20 ($0.90)
Per hectare $73.10 ($4.70) $67.20 ($3.70)

Estimated causal effect, cost basis

Per acre $6.00 ($1.30) �$0.10 ($1.50)
Per hectare $14.80 ($3.20) �$0.20 ($3.70)

Note: There were a total of n ¼ 969 fields of which n1 ¼ 217 were treated fields. SEs are in
parentheses.

� Average total number of pesticide applications per year for arthropod pests other than Lygus
on or after 1 July.

� Average total cost of pesticide applications for arthropod pests other than Lygus on or after 1
July.
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secondary pest outbreaks elicited by early-season Lygus

treatment under current management practices.

The difference between the estimated causal effects in

treated and untreated fields might be explained by

observing that the overall effect of an early-season

broad-spectrum insecticide on secondary pests combines

the direct suppressive effect of mortality from the

pesticide with indirect, disruptive effects that promote

secondary pest outbreaks (e.g., reduced abundances of

natural enemies). We speculate that the indirect,

disruptive effects exceeded the direct suppressive effects

in fields that were treated for early-season Lygus, while

the reverse would have been true (though to a lesser

degree) in fields that were not treated for early-season

Lygus. Although we don’t know with certainty why this

may be so, we observe that the predicted number of late-

season non-Lygus pesticide applications in treated fields,

if those fields had not been treated (2.25 – 0.45¼ 1.80),

was less than the actual number of late-season non-

Lygus pesticide applications in untreated fields (1.99

treatments). This difference may indicate that, prior to

the application of an early-season insecticide, natural

enemies were contributing more to pest suppression in

fields that were ultimately treated.

Several possible (and nonexclusive) mechanisms may

drive secondary pest outbreaks, and this analysis does

not discriminate among them. However, to the extent

that the secondary pest outbreaks observed are caused

by the disruptive effects of killing arthropod predators

and parasitoids, the dollar value of the cost of pesticide

applications required to curb secondary pest outbreaks

sets a lower bound on the ecosystem services provided

by native communities of natural enemies in this system.

A full accounting of the value of the ecosystem services

provided by native natural enemies would require (at the

least) measuring the cost of all pest outbreaks under the

hypothetical scenario in which natural enemies were

permanently absent. Such an accounting is beyond the

scope of this analysis. Nevertheless, this lower bound

may inform ongoing efforts to valuate ecosystem

services in agriculture (Costanza et al. 1997, Zhang et

al. 2007).

Without doubt, our analysis rests on a host of

assumptions. The chief assumption is that the decision

of whether or not to treat fields for early-season Lygus is

conditionally independent of the potential outcomes (the

number of late-season secondary pesticide applications),

given the confounding variables in the regression

models. We argue that this is a viable assumption,

especially because our confounder data document the

conditions (including Lygus densities) that were used to

determine pesticide treatments. Nonetheless, if there are

unmeasured confounders that are correlated with both

the early and late-season pesticide recommendations,

then those confounders would render this analysis

suspect.

Careful consideration must also be given to the extent

to which the hierarchical structure of these data

compromise the assumption of conditional indepen-

dence among fields. Although the data consist of n¼ 969

fields (or, more accurately, field-years), these fields are

nested within 11 ranches, and the ranches are in turn

nested within four PCAs. Thus, it is reasonable to ask

whether or not the statistical precision of the analysis is

FIG. 2. Fitted or predicted number of late-season pesticide applications for secondary pests with early-season insecticide
treatment for Lygus (A¼ 1) vs. without early-season insecticide treatment for Lygus (A¼ 0), where A denotes the treatment. (A)
Fields that were treated for early-season Lygus (A ¼ 1); (B) all fields. Diagonals are lines of equality.
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exaggerated by considering the fields as conditionally

independent given treatment and covariates. An analysis

of residuals from our regression models suggest that

fields from the same ranch and year are indeed positively

correlated, albeit mildly (þ0.17). One likely explanation

for this correlation is that population dynamics of

arthropod communities could have a spatial aspect that

exceeds the scale of a single field. For example, mowing

an alfalfa field could trigger Lygus migrations into

several nearby cotton fields. This may be particularly

true for smaller cotton fields that have a greater edge-to-

area ratio and are less buffered against arthropod

dispersal. Thus, these data contain less information

than 969 truly independent fields, and the statistical

uncertainty in our estimates is slightly greater than the

bootstrap calculations suggest. Conceivably, one could

design a bootstrap procedure that accounts for this

spatial correlation (e.g., Zhu and Morgan 2004),

although doing so in conjunction with the conditional

resampling already required would be challenging.

Our present analysis is not intended as a management

recommendation for cotton farmers. Integrated pest

management in cotton must consider a host of

additional factors, not the least of which is the yield of

the cotton crop. Instead, the goal of this analysis is to

quantify an ecological phenomenon that is difficult to

document experimentally.

The statistical methods for causal inference used here

are, to our knowledge, not yet broadly known or used in

the natural sciences. On the one hand, the theory

underlying causal-inference methods has been rigorously

developed, and the methods enjoy growing use in some

realms of science (Rosenbaum 2002, Rubin 2005,

Imbens and Wooldridge 2009, Gangl 2010). On the

other hand, these methods have not withstood the test of

time to the same extent as more conventional statistical

approaches, and thus some healthy skepticism is

warranted. However, causal-inference methods may

promise new analytical possibilities for some types of

ecological and/or agricultural studies, and their useful-

ness deserves to be investigated.

In our view, there are two primary challenges to using

causal-inference methods in ecology. First, these meth-

ods require enough data to support defensible statistical

models for all of the possible treatments that one wishes

to consider. As such, causal-inference methods will be

most useful in ecoinformatics settings, where consider-

able volumes of data can be gathered. Because these

data should span a breadth of treatments or manage-

ment strategies, the most promising settings will be ones

in which decision-makers have attempted a diversity of

approaches. Second, the ‘‘unconfoundedness’’ assump-

tion requires that data are available for covariates that

confound treatment with response. While it is difficult to

speculate broadly about the types of problems for which

these data may exist, we suspect that appropriate data

are more likely to be available in management settings

such as IPM or natural resource management, where

managers may document conditions that influenced

management decisions.

As a final, technical note, we observe that for this

analysis, the implementation of causal-inference meth-

ods was complicated by the prevalence of categorical

variables (e.g., ranch, PCA, year, cotton type) in our set

of confounders. As we mention above, when using

regression models to quantify causal effects the distri-

butions of the confounders need to be sufficiently

comparable among treatment groups. This comparabil-

ity is more challenging with categorical confounders

because categorical confounders increase the dimension-

ality of the confounder space. To the extent that

categorical confounders may be more common in the

natural sciences than in econometrics or public health,

high-dimensional confounder spaces may open a tech-

nical challenge in causal-inference theory that is ripe for

new progress.
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APPENDIX A

A detailed description of the methods used to calculate the cost of pesticide applications (Ecological Archives A021-124-A1).

APPENDIX B

A table of residual deviances of predictors for Poisson regression models (Ecological Archives A021-124-A2).
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