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ABSTRACT
Understanding the population dynamics of herbivorous insects is
critical to developing and implementing effective pest control pro-
tocols. In the context of inverse problems, we explore the dynamic
effects of pesticide treatments on Lygus hesperus, a common pest of
cotton in the western United States. Fitting models to field data, we
explore the topic of model selection for an appropriate mathemati-
cal model and corresponding statistical models, and use techniques
including ANOVA-based model comparison tests and residual plot
analysis tomake the best selections. In addition we explore the topic
of data information content: in this example, we are testing the
question of whether data, as it is currently collected, can support
time-dependent parameter estimation. Furthermore, we investigate
the statistical assumptions often haphazardly made in the process
of parameter estimation and consider the implications of unfounded
assumptions.
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1. Introduction

It has long been understood that solving problems in applied ecology often relies on an
accurate understanding of population dynamics [19, 24]. When addressing questions in
fields ranging from conservation science to agricultural production, ecologists often collect
time-series data in order to better understand how populations behave when subjected to
abiotic or biotic disturbance [11, 12, 29]. Furthermore, inmany cases, the development and
analysis of mathematical models can help make sense of time-series data as well as predict
future population responses to ecological drivers. Fitting models to data, which requires
a broad understanding of both statistics and mathematics, is thus an important compo-
nent of understanding pattern and process in population studies. In agricultural ecology,
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pesticide disturbance may disrupt predator-prey interactions [35, 36] as well as impose
both acute and chronic effects on arthropod populations [17, 26, 39]. In the past two
decades, the focus of many studies of pesticide effects on pests and their natural enemies
has shifted away from static measures such as the LC50, instead emphasizing population
metrics/outcomes [20–22, 34, 37]. In the meantime, we now have decades of field studies
that have generated time-series data aimed at assessing the effects of pesticides on arthro-
pods at the population level [10, 23, 27, 30, 33, 35, 41]. When working with real data, one
must consider the strength or information content [8] of the data set. This can be described
as an understanding of how strongly one can carry out model validation given a particular
data set. There are many ways to quantify the content of a data set, including use of sen-
sitivities, the Fisher Information Matrix and Akaike Information Criteria methods [4, 8,
9, 13, 38]. Simple mathematical models, parameterized with field data, are often used to
then predict the consequences of increasing or decreasing pesticide exposure in the field.
Accuracy in parameter estimation and fitting data to models, which has received increas-
ing attention in ecological circles [25, 28], depends critically on the appropriate model
selection. In all cases, this includes optimal selection of both statistical and mathematical
models fit to data – something that is not always fully explicitly addressed in the ecological
literature. We address this gap using data from pest population counts of Lygus hesperus
Knight (Hemiptera: Meridae) feeding on pesticide-treated cotton fields in the San Joaquin
Valley of California [31]. In particular, we fit L. hesperus counts to a simple mathematical
model and consider two statistical models: one assuming absolute error and one assuming
relative error.We carry out model selection between two nestedmathematical models, and
compare the outcomes when assuming absolute error versus relative error.

2. Methods

2.1. Data

Our database consists of approximately 1500 replicates of L. hesperus density counts, using
sweep counts, in over 500 Pima or Acala cotton fields in 2004–2008. In each replicate,
data was collected by one of four pest control advisors (PCAs) between June 1 and August
30. Although there was variability in data collection schedule between PCAs and between
replicates, fields were sampled roughly 1–3 times per week, at irregular times during these
summer months. In addition, some PCAs chose to count both nymph and adult L. hes-
perus, while others simply counted the total number of L. hesperus caught in the nets. In
addition, the replicates varied in the presence or absence of chemical treatments, as well
as in frequency, schedule, and variety of pesticide applications, ranging from zero to six
applications in one season. However, the netting effort was standardized across all PCAs
and all replicates.

Within the entire database, we consider a particular replicate, which we will denote as
replicate 1, that was treated with pesticides three times intermittently between 1 June and
30 August 2007. The pesticides (and the associated targets) used on this replicate are sum-
marized in Table 1. Note that in addition to the target types listed, additional chemicals
may have been applied, such as surfactants, plant nutrients, and adjuvants. Although it is
likely that these chemicals have little effect on L. hesperus, effects are still possible; however,
they will be ignored in our analysis.
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Table 1. Dates, pesticides, and pests targeted in chemical
treatments applied to replicate 1.

Date Chemical treatments Targets

June 12 B-85/STEWARD Beet armyworms
June 21 Prowl H2O/IGNITE Weeds

2/B-85/CHATEAU/TRIMAX PRO Aphids
1/ZEPHYR 0.15EC Mites

July 27 HOOK / ZEAL Mites

2.2. Statistical models

We now describe the statistical model, in terms of the mathematical model and the col-
lected data. Let x denote theN−dimensional vector of state variables (x for the scalar case),
withθθθ = [q, x0] (if initial conditions x0 are unknown) denoting parameters to be estimated
in the ordinary differential equation (ODE) system (mathematical model)

dx
dt

= g(t, x(t), q)

x(t0) = x0.
(1)

In many cases, not all variables are observed in data collection, so we define the m-
dimensional observation process f(t;θθθ) = Cx(t;θθθ), with m ≤ N. Assume we have n data
points yj at discrete time points {tj}nj=1. It follows that f(tj;θθθ) = Cx(tj;θθθ) for j = 1, . . . , n.

We now define the statistical model: a quantified relationship between the observed
model output and the raw data; similarly, one could think of this as a description of the
measurement/observation error. First consider an absolute error model

Yj = f(tj,θθθ0) + E j, j = 1, . . . , n, (2)

with realization

yj = f(tj,θθθ0) + εεεj, j = 1, . . . , n, (3)

where θθθ0 is the p × 1 ‘true’ parameter vector which we assume exists. Observe that f(tj,θθθ0)
is completely deterministic, so the randomness of the m × 1 vector Yj is due to the
m × 1-dimensional random error E j (for j = 1, . . . , n). We assume that E j, j = 1, . . . , n
has zero mean and covariance matrix given by V0 = Var(E j) = diag(σ 2

1 , σ
2
2 , . . . , σ

2
m) for

j = 1, . . . , n (where {σ 2
i }mi=1 are constants). Error of this kind is often described as i.i.d –

independent and identically distributed. Let Ȳ be the m × n matrix whose n columns are
the m × 1 random vectors {Yj}nj=1; that is, Ȳ = [Y1,Y2, . . . ,Yn]. One seeks to estimate
unknown parameters by minimizing the least squares discrepancy between model out-
put and data. In other words, one must minimize the ordinary least squares (OLS) cost
functional

Jn(Ȳ,θθθ) = 1
n

n∑
j=1

[Yj − f(tj,θθθ)]T[Yj − f(tj,θθθ)]. (4)
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Because {Yj}nj=1 are random vectors, one must define the estimator θθθnOLS = argminθθθ∈Q Jn
(Ȳ,θθθ) and corresponding estimate

θ̂θθ
n
:= θ̂θθ

n
OLS = argmin

θθθ∈Q
Jn(ȳ,θθθ). (5)

That is, θ̂θθ
n
is the best OLS estimate for θθθ0.

This absolute error model is often haphazardly and incorrectly assumed in both max-
imum likelihood and least squares optimization methods. (In choosing an optimization
method, one should recall that maximum likelihood models also require an assumption
of the underlying error probability model.) The modeler can carefully choose this error
model to allow for some type of relative error [2, 4] if such a model can be correctly iden-
tified. Thus the modeler should also (in the absence of specific information on the error
process) consider a relative error model of the form

Yj = f(tj,θθθ0) + fγ (tj,θθθ0) ◦ E j, j = 1, . . . , n, (6)

with realization

yj = f(tj,θθθ0) + fγ (tj,θθθ0) ◦ εεεj, j = 1, . . . , n, (7)

where γ is some constant that depends on the given data set. Because f and E j are both
m × 1-dimensional operators, ‘◦’ denotes component-wisemultiplication in Equations (6)
and (7). When γ = 0, Equation (6) is equivalent to Equation (2). In the case of popula-
tionmodels, Equation (6) is often correct, and represents error with non-constant variance
(whichmay depend on the output function f(t,θθθ)). One can determine if a given statistical
model is appropriate by examining residual plots (residuals versus time, residuals versus
observed output) and visually determining if they violate the assumption that the residuals
are i.i.d. [2]. Typically, this visual investigation is also how one determines the best value
of γ . We will consider both statistical models and determine the best choice.

For ease of notation, we will present the remaining methodology in the context of the
scalar problem (N=1), although allmethodology can be easily extended to vector systems.
Therefore, when referring to the randomobservation variable, wewill nowuse the notation
Y = [Y1,Y2, . . . ,Yn] where Yj is the one-dimensional version of the previously definedYj.

2.3. Residual plots and generalized least squares

Residual plots are powerful in their ability to illuminate incorrect assumptions regard-
ing observation error. One can examine the residual plots versus time and model output,
respectively, and determine whether the scatter of the error seems to violate the statistical
assumptions [2]. This simple process can often prevent a crucial mistake – an incorrect
statistical model assuming absolute error and other modelling mistakes. If one finds that
the relative error statistical model (6) is most suitable, for some γ , one must replace the
cost functional (4) with a generalized least squares (GLS) formulation [2, 4, 14, 16, 32]

J̃n(Y) = 1
n

n∑
j=1

ωj[Yj − f (tj,θθθ)]2 (8)
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with weights ωj = ωj(θθθ) = f−2γ (tj,θθθ), j = 1, . . . , n. Consequently, one must redefine the
estimator θθθnGLS = argminθθθ∈Q J̃n(Y,θθθ) with corresponding estimate

θ̂θθ
n
:= θ̂θθ

n
GLS = argmin

θθθ∈Q
J̃n(y,θθθ). (9)

We assume an errormodel in the formof (8), but amore generalized formof errormodel
for GLSmethods can be found in [3, 4, 14, 16, 32]. GLS estimates θ̂θθ

n
and estimated weights

{ωj(θθθ)}nj=1 are found using a standard iterative method [2, 4, 14, 16, 32] as given below .

For the sake of notation, we will suppress the sample size superscript n (i.e. θ̂θθGLS := θ̂θθ
n
GLS)

in describing the iterative method.

(1) Estimate θ̂θθGLS by θ̂θθ
(0)

using OLS method (4). Set k=0.
(2) Compute weights ω̂j = f−2γ (tj, θ̂θθ

(k)
).

(3) Obtain k+1 estimate for θ̂θθGLS with θ̂θθ
(k+1)

:= argmin(1/n)
∑n

j=1 ω̂j[yj − f (tj,θθθ)]2.
(4) Set k:= k+1 and return to step 2. Terminate when the two successive estimates for

θ̂θθGLS are sufficiently close.

2.4. Mathematical models

In previousmodelling attempts ofL. hesperuspopulation in untreated fields, an exponential
model adequately described the total population growth [9]. However, manipulations of
the system, such as pesticide applications, time-varying presence of predators or prey, or
resource changes, can be mathematically represented with time-varying parameters. We
now consider a modified model incorporating time-dependent growth due to chemical
applications. Let j∗ = the number of pesticide applications in a data set. Let model A be as
follows:

dx
dt

= k(t)x,

x(t1) = x1,
(10)

where t1 is the time of the first data point, and k(t) is a time dependent growth rate

k(t) =
{

η + p(t) t ∈ Pj, j ∈ {1, 2, 3},
η otherwise,

where p(t) is described below, and Pj = [tpj , tpj + 1/4], j = 1, . . . j∗ with tpj as the time
point of the jth pesticide application. Note that |Pj| = 1/4 which is approximately the
length of time of one week when t is measured inmonths. This reflects the general assump-
tion that pesticides and herbicides are most active during the 7 days immediately following
treatment. Clearly, η is the constant growth rate of the total population in the absence of
pesticides. In addition, t=0 refers to June 1 (as no data are present before June 1 in our
database).
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We use linear splines to approximate p(t) as follows. Considerm linear splines:

p(t) =
s∑

i=1
λili(t),

where

li(t) = 1/h

⎧⎪⎨
⎪⎩
t − t̄i−1 t̄i−1 ≤ t < t̄i,
t̄i+1 − t t̄i ≤ t ≤ t̄i+1,
0 otherwise,

(11)

where the evenly spaced spline functions are centred over nodes {t̄i} given by tpj :
|Pj|/(s + 1) : tpj + 1/4, and the step size h is given by h = t̄i − t̄i−1. For our analysis with
this model, to impose continuity of k(t), we do not include the splines centred over the
‘end’ nodes, that is, t = tpj , and t = tpj + 1/4. Linear spline approximations are simple, yet
flexible in that they allow the modeler to avoid assuming a certain shape to the curve being
approximated. Incorporating a time-dependent parameter such as k(t) is useful when
modelling a system with discontinuous perturbations (such as the removal of a predator,
or the application of an insecticide). The addition of more splines (s>3) provides a finer
approximation, but demands more terms in the parameter estimates. We conjecture that it
is likely that s=3 (excluding splines centred at interval endpoints) is sufficient. An example
of three linear splines over the interval [0, 0.25 ] is given in Figure 1(a). A sample function
p(t) for some chosen values of {λi}3i=1 is pictured in Figure 1(b). Now consider model B:

dx
dt

= ηx,

x(t1) = x1,
(12)

where x1, η are defined as above. Note thatmodel B is equivalent tomodel Awhen applying
the constraint p(t) ≡ 0, that is, λi = 0 for i=1,2,3. Therefore, this is the case of comparing

(a) (b)

Figure 1. (a) An example of three linear splines centred over evenly spaced nodes over the inter-
val [0, 0.25 ], not including splines centred at the endpoints where p(t) must be zero, as defined in
Equation (11), and (b) an example ofp(t)over the interval [0, 0.25 ]with spline sumcoefficients {λi}3i=1 =
{−8,−9,−5}.
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nested models, and an ANOVAmodel comparison test is applicable to determine whether
a time-dependent growth parameter is not only appropriate in describing these population
dynamics, but can also be estimated given the information content of the data. In our anal-
ysis of models A and B, we first estimated the initial condition x1 using model B (as this
data point precedes any pesticide applications and provides a better estimate for x1), and
then fixed this parameter in all subsequent parameter estimates. Therefore, the parameters
to be estimated are θθθ = q = [η, λ1, λ2, λ3]T .

2.5. Model comparison test

Wenow present the residual sum of squares ANOVA-typemodel comparison test based on
confidence levels [14, 16, 32] as developed in [1], described in detail in [2, 4] and extended
in [5] to GLS problems. This test is used to determine which of several nested models is
the best fit to the data; therefore, this test can be applied to the comparison of models A
and B. While Akaike Information Criteria methods are commonly known to incorporate
both model fit and model complexity into quantifying a model selection score [38], this
ANOVA-basedmodel comparison test for nestedmodels indirectly incorporates the num-
ber ofmodel parameters into the resulting test statistic, aswill be seen below.Again, for ease
of notation and because we are applying this test to the comparison of one-dimensional
models, wewill present everything in the scalar case (although it can be applied to a general
vector system).

Assume we have math model f (t,θθθ) and n observations Y = {Yj}nj=1 with realizations
y = {yj}nj=1 and assume the statistical model assumes either absolute or relative error and
takes the form of (2) or (6), respectively. Here we will describe the methodology in the
context of absolute error (OLS optimization), but this test can be readily extended in the
case of relative error and GLS optimization [4, 5].

Let Q denote the admissible parameter set, where Q is a compact subset of R
p,

with θθθ0 ∈ int(Q). Recall that we define the OLS estimator θθθnOLS = argmin
θθθ∈Q

Jn(Y,θθθ) with

corresponding estimate

θ̂θθ
n
:= θ̂θθ

n
OLS = argmin

θθθ∈Q
Jn(y,θθθ).

It is useful to test if θθθ ∈ QH , whereQH is some particular subset ofQ of the form

QH = {θθθ ∈ Q |Hθθθ = c}, (13)

where H is an r × p matrix of full rank, and c is an r × 1 constant vector, whose entries
are determined by the problem at hand. We can formulate the null and alternative
hypotheses:

H0: The fit provided by model A does not provide a statistically significantly better fit
to the data than the fit provided by model B.
HA: The fit provided by model A does provide a statistically significantly better fit to
the data than the fit provided by model B.
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In other words, the null hypothesis H0 is equivalent to the statement θθθ0 ∈ QH . If we
define

θθθnH(Y) = arg min
θθθ∈QH

Jn(Y,θθθ), θ̂θθ
n
H( y) = arg min

θθθ∈QH
Jn(y,θθθ)

we notice that Jn(y, θ̂θθ
n
H) ≥ Jn(y, θ̂θθ

n
). Next, we define the non-negative test statistic and

realization by

Tn(Y) = n(Jn(Y,θθθnH) − Jn(Y,θθθn)), T̂n(y) = n(Jn( y, θ̂θθ
n
H) − Jn(y, θ̂θθ

n
)).

We then define the test statistic and realization

Un(Y) = Tn(Y)

Jn(Y,θθθn)
, Ûn(y) = Tn( y)

Jn(y, θ̂θθ
n
)
.

Under certain assumptions (see [1, 4] for details), we have the following conclusions:

(1) θθθn → θθθ0 with probability one as n → ∞;
(2) If H0 is true,Un → U in distribution as n → ∞, whereU ∼ χ2(r), a χ2 distribution

with r degrees of freedom with r being the number of constraints on the parameter
spaceQH , as defined in Equation (13).

Now consider two parameters of interest: a threshold τ and significance level α, where
for a given τ ,α = Prob(U > τ). This statistic relates to our null hypothesis in the following
way:

If the test statistic Ûn > τ , we reject H0 as false with confidence level

(1 − α) × 100%.Otherwise, we do not reject H0.

One can use a standard χ2 distribution table [18, 40] to determine the value of τ given a
choice of α which is appropriate given the data (highly controlled lab data will usually call
for a higher confidence level than field data). We note that as explained in [4, p. 149], an
equivalent formulation for hypothesis testing uses the concept of p-values to reject or not
reject H0. The minimum value α∗ of α at which H0 can be rejected is called the p-value .
Thus, the smaller the p-value , the stronger the evidence in the data in support of rejecting
the null hypothesis.

We draw the reader’s attention to the second conclusion above, where we see how this
model comparison test addresses model complexity. In this example, we compare models
A and B, with p=4 and p=1, respectively, which implies that we have r=3 number of
constraints. If r were to increase (i.e. if we were to consider a more complicated model
with more parameters to be compared with either model A or B), UN would converge to
a χ2 distribution with greater degrees of freedom, in turn increasing our threshold τ . In
this way, this model comparison test incorporates model sophistication (i.e. number of
additional parameters to be estimated) into model selection.
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3. Results

3.1. Statistical models and residual plots

Using residual plots, we determine whether an absolute or relative error statistical model
best suits our data. We first consider absolute error and present the residual plots versus
time and model output in Figure 2(a) and 2(c), respectively, where we see a clear right
opening horn shape. This violates the assumption that the error terms Ej, j = 1, . . . , n are
i.i.d with constant variance.

Next, we choose a relative error model and display the residual plots versus time and
model output, respectively, for model A using γ = 0.85 in Equation (6) (see Figure 2(b)
and 2(d)). We choose γ by searching for the value that consistently produced i.i.d. resid-
ual plots given a range of parameter estimates. In our computations, γ = 0.85 produces
these results for both models (A and B). Although we only present here the residual plots
for model A, the plots for model B exhibit very similar traits (see [7]). The reader may
compare Figure 2(a) and 2(c) with Figure 2(b) and 2(d), respectively, to visualize the clear
difference between the absolute and relative error statistical models. From these results,
we assume a statistical model (6) with γ = 0.85 for all subsequent analysis. When imple-
menting this method, we choose the terminating tolerance in the GLS algorithm in the

(a) (b)

(c) (d)

Figure 2. Model A residuals versus time using (a) absolute error and (b) relative error (γ = 0.85); model
A residuals versus observed model output using (c) absolute error and (d) relative error.
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following manner:

stop if max |θ̂θθ(k+1) − θ̂θθ
(k)| < 10−2,

where max | · | is the max-norm for vectors.

3.2. Mathematical model and parameter estimation

In order to estimate the true parameter vector θθθ0 = [η, λ1, λ2, λ3]T , we find the parameter
values which minimize the GLS cost functional (8). Because of the stiff nature of the lin-
ear spline approximations, we utilize MATLAB’s ODE solver ode15s. We consider both
unconstrained and constrained optimization techniques for parameter estimation. In the
case of unconstrained optimization,Q = R

p, whereas for constrained optimization,Q is
some strategic subset ofRp, given the nature of the parameters. It is reasonable to presume
that λi < 0 for i=1,2,3, given the assumption that pesticide applications slow population
growth. While non-negative values for λi are not impossible (as in the case of hormesis
[15]), they are generally unexpected. Therefore, to carry out constrained optimization, we
letQ = {R × [−∞, ε]3}. We use an upper bound of ε (some small positive value) rather
than 0, to comply with an assumption of the model comparison test [1] and to permit mild
hormetic effects. In practice, it is reasonable to further constrain Q = {R × [−K, ε]3},
where K is some positive finite number. Based on the estimates we found with a variety of
initial guesses, we letK=20 in our constrained optimization search. In order to determine
the best method, we also estimate parameters and calculate confidence intervals for each
parameter using bootstrapping, which allows ones to look at the underlying distribution of
each parameter (see [6] for details concerning both the theory and algorithm). For three out
of the four parameters, the parameter estimate confidence intervals are significantly nar-
rower when using constrained optimization in contrast to the confidence intervals found
using bootstrapping with unconstrained optimization. Here, we estimate parameters and
perform the model comparison test using MATLAB’s constrained optimizing function,
fmincon.

3.3. Model comparison results

We perform the model comparison test with r=3 degrees of freedom and p=4 parame-
ters, using constrained optimization.We report the results using the relative error statistical
model (6), and subsequently the incorrect statistical model (2) for the sake of comparison.
In the computation of both optimization searches, we use ode15s to solve model A and
ode45 to solve model B (due to the stiff nature of model A and non-stiff nature of model
B). ConsiderQ as defined above (with optimization constraints) and define

QH = {θθθ ∈ Q |Hθθθ = c}, (14)

whereH =
[ 0 1 0 0
0 0 1 0
0 0 0 1

]
, and c =

[ 0
0
0

]
. In other words,QH is the subset ofQ such that λi = 0

for i=1,2,3.
In comparison to highly controlled experimental data, ecological field data are more

greatly affected by environmental factors, includingweather changes and cross-fieldmigra-
tion effects, none of which are incorporated intomodels A and B. Therefore onemay argue
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that a larger significance value (e.g. α = 0.1) is a reasonable choice of significance. Using a
χ2(3) distribution table, we identify the corresponding threshold τ ; given, r = 3, α = 0.1,
then τ = 6.251. The results are summarized in Table 2, where ‘Conf’ represents the confi-
dence to reject the null hypothesis. As we have already noted above, one can equivalently
carry out this test using p−values (see [4] for details). One can see that Ûn = 7.59 > τ ,
therefore we can reject the null hypothesis with at least 90% confidence. In addition, we
report the parameter estimates θ̂θθ

n
and θ̂θθ

n
H in Table 3, as well asmodel fits to data formodels

A and B in Figure 3(a) and 3(b), respectively.
We also present in Table 4 the results when using the incorrect statistical model. When

assuming absolute error, we find Ûn = 1.46 < τ , therefore we fail to reject the null hypoth-
esis. As discussed below, this leads to a faulty conclusion regarding our primary goal in

Table 2. Model comparison results using
(best) relative error model and GLS.

Jn JHn Ûn Conf

0.30 0.42 7.59 94%

Table 3. Parameter estimates over admissible parameter spaces Q
andQH , using (best) relative error model and GLS.

Parameter space η λ1 λ2 λ3

Q 3.7 −5.5 −10.4 −9.1
QH 1.8 0 0 0

(a) (b)

Figure 3. (a): Model A fit to data using relative error (γ = 0.85) (b) model B (ignoring effects of pes-
ticides) fit to data using relative error. Vertical dashed lines denote the time points at which pesticides
were applied.

Table 4. Model comparison results, using
(incorrect) absolute error model and OLS.

Jn JHn Ûn Conf

0.18 0.20 1.46 31%
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this study: the statistical significance of pesticide effects on L. hesperus populations, and
reflecting this in the best choices of both statistical and mathematical models.

4. Discussion

It is difficult to overemphasize the importance of carefully choosing the best statistical
model. In ecology and many other disciplines, OLS (with an absolute error model) is a
common method of parameter estimation, but GLS with a relative error statistical model
is a better choice in many situations. A relative error model is not always best, and often
an assumption of absolute error is sufficient. However, the statistical model will not only
be critical in determining the resulting method to use in obtaining the parameter val-
ues, but will also affect every subsequent area of analysis, including model comparison
results. Therefore, correct identification of the statistical model is imperative. In addition
to the methods using residual plots seen above, there are other methods being explored to
address this topic, including a technique that does not require prior parameter estimation
[3]. In this case study, when incorrectly assuming an absolute error statistical model, the
model comparison test results reported only 31% confidence to reject the null hypothesis,
far below our desired threshold. Therefore, we fail to reject the null hypothesis. Based on
these results, we could make one of the following incorrect conclusions: (a) the data does
not support the estimation of time-dependent parameters or (b) model B best fits the data
because pesticides did not have a significant effect on the population growth of L. hesperus.

However, it is clear that a relative error statistical model is a more accurate choice in this
example, and the model comparison test results drive us toward the opposite conclusions:
the data can support the estimation of time-dependent parameters, and a model incorporat-
ing the effects of pesticides does provide a statistically significantly better fit to the data than
a simple exponential model. These conclusions are supported by the model fits presented
in Figure 3. Although the exponential model does pick up the general increasing expo-
nential nature of the data (see Figure 3(b)), the effects of pesticides are clearly non-trivial
and should be represented in the mathematical model (see Figure 3(a)) and should not be
overlooked, as in model B, in this case study.

In short, the statistical model defines the cost functional based on an assumed error
structure, which defines the parameter estimates . All subsequent analyses, includingmath
model selection, sensitivity analysis and other common studies, are heavily influenced by
the assumptions of the statistical model describing the underlying error. Computationally,
using GLS and a relative error model requires minimally more effort. Therefore, we stress
that it is not only imperative, but easy to incorporate this important step into themodelling
process.

In addition to statistical model selection, we also draw attention to the consideration
of time-dependent parameters. Using flexible methods like linear splines to approximate
unknown effects caused by manipulations to the system can provide better model fits to
data. Use of time-dependent parameters can be considered for many ecological problems,
especially those with mid-season changes, including, but not limited to, known migration
patterns, addition or removal of some species, chemical changes, non-constant breeding,
and distinct weather changes.

We may consider several different approaches toward expanding on the current results.
First, it is recommended that we repeat the preceding analysis on other replicates, including
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thosewith 1,2, or 4 pesticide applications to produce amore robust study of the information
content of our larger database. In other words, it is a beneficial exercise to determine if
there is a correlation between parameter estimation accuracy/data information content
(see also [8] for examples) and frequency of pesticide application. In addition, we would
like to consider a 2-D compartmental model, as in previous research [9] and use the model
comparison test to determine if the data can support time-dependent parameters for each
age class. This could not only shed light on the class-specific effects of pesticides (on both
nymphs and adults), but could also provide further insight into whether distinguishing
between nymph and adult age classes during data collection is beneficial to understanding
population dynamics, in the case of pesticide-treated fields. Moreover, we are exploring
other methods of verifying correct statistical method in statistical model misspecification
studies that do not rely on previous computation of the inverse problem. Lastly, we would
like to use sensitivity analysis to determine sensitivity of the model output (population
projection) to perturbations in parameter values. This could provide insight into the subtle
effects of pesticide efficacy on L. hesperus population growth.
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