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Summary

1. A valuable technique in the study of insect movement is protein marking, a quantitative method

where individuals are categorized as marked or unmarked based on the amount of foreign protein

detected by an enzyme-linked immunosorbent assay (ELISA).

2. Whether individuals are considered marked or not is dependent on a threshold value chosen by

the experimenter. The traditional method of choosing the threshold accepts some risk of false posi-

tives, wherein unmarked individuals are misclassified as marked. The error rate associated with this

method, adopted from the rubidium marking literature, relies on assumptions violated by most

ELISA data.

3. We critically examined the effect of violating these assumptions on the false positive rate. In

long-distance dispersal studies where the ratio of unmarked tomarked insects is high, false positives

can seriously bias estimates of insect movement abilities.

4. Simulations demonstrated that the conventional method for choosing a threshold (i) masks the

presence of false positives, (ii) results in a 10-fold higher than expected false positive rate, and (iii)

relies on assumptions of normality that are rarely satisfied; non-normality produces further

increases in false positive rates.

5. We provide some solutions by introducing a new procedure for choosing a threshold that

decreases the incidence of false positives and allows data to be corrected for anticipated rates of false

positives. This methodology should enhance researcher confidence in the data generated from dis-

persal studies using proteinmarking techniques.

Key-words: decision threshold, ELISA, false positive, long-distance dispersal, Lygus hesperus,

protein marking

Introduction

The study of long-distance dispersal has long been considered

an uncertain science. Whereas the importance of long-distance

dispersal is well recognized (Higgins & Richardson 1999;

Nathan 2001; Cain, Nathan & Levin 2003; Trakhtenbrot et al.

2005), its study has been impeded by the challenges associated

with quantifying rare long-distance dispersal events. In

particular, uncertainty is inherent in the study of long-distance

dispersal, and the processes associated with long-distance

dispersal are highly stochastic (Nathan et al. 2003). As

proposed by Nathan et al. (2003), to estimate long-distance

dispersal it is important to reduce the noninherent uncertain-

ties by improving estimationmethods.

Dispersal is often studied by quantifying population redistri-

bution through mark–capture techniques (Turchin 1998;

Southwood & Henderson 2000). A variety of methods have

been employed tomark individuals (e.g., fluorescent dust, trace

elements), including recently developed protein markers

(Hagler et al. 1992; Hagler 1997; Hagler & Jackson 2001).

These protein marks are detected with protein-specific

enzyme-linked immunosorbent assays (ELISA), the result of

which is a continuous variable in the form of an optical density

(OD) reading. The experimenter uses a threshold to classify

individuals as marked or unmarked. The threshold method

commonly used was initially proposed by Stimmann (1974)

(henceforth the conventional method) for rubidium marking.

This threshold is defined as the mean level of marker in

unmarked individuals plus three times the standard deviation

of the unmarked distribution.

The extension of protein marking to use common inexpen-

sive proteins (Jones et al. 2006) has made protein marking an
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increasingly popular method for studying insect movement on

increasingly large scales (Boina et al. 2009; Horton, Jones &

Unruh 2009). It is therefore important to evaluate the conven-

tional method for choosing a threshold, and to see what modi-

fications might be needed to use this method in the context of

ELISA. Specifically, the conventional method explicitly

assumes a normal distribution of unmarked individuals and

implicitly assumes the evaluation of a large number of

unmarked individuals when setting the threshold. One goal of

this study is to evaluate the conventional method when these

assumptions are violated and to determine whether errors gen-

erated affect estimates of dispersal. We demonstrate that when

applied to data generated from ELISA, the conventional

threshold substantially underestimates the false positive (FP)

rate, which can lead to inflated estimates of long-distance dis-

persal. The second goal is to introduce a new threshold proce-

dure that has a low and quantifiable FP rate.

This study ismotivated by our attempts to use proteinmark-

ing data to study long-distance dispersal. We will first briefly

introduce the topic of choosing a threshold and its effect on the

ability to discriminate between two groups. We then present a

simple simulation to illustrate the effect of FPs in long-distance

dispersal data. We will return to this example near the conclu-

sion of the study to demonstrate the proposed threshold proce-

dure’s improvement on dispersal estimates.

Discriminating between two groups based
on a continuous metric

The binary classification of a continuous variable is accom-

plished with a threshold that divides cases into mutually exclu-

sive classes (Forbes 1995). When the distributions of values for

each group do not overlap the threshold is set at a value

between the two distributions. In this case all of the individuals

below the threshold will be correctly categorized as unmarked

individuals (known as true negatives, TN), and all of the indi-

viduals above the threshold will be correctly categorized as

marked (known as true positives, TP). More commonly, how-

ever, the distributions of the two groups overlap, resulting in

classification errors (Fig. 1). The two types of errors are false

positives (FP), when cases that are actually unmarked are mis-

classified as marked, and false negatives (FN), those cases that

are actually marked but are incorrectly classified as unmarked.

FPs are Type I errors, and FNs are Type II errors.

The optimal threshold for a given discrimination problem

depends on the type of error that can be tolerated, which is

dependent on the question under investigation. For example,

in conservation-basedmodels used to identify habitat areas for

protection, FNs are more costly than FPs, because FNs would

exclude habitat potentially vital to threatened species, while

FPs would merely add protected habitat (Fielding & Bell

1997). Similarly, for a medical test where further tests or treat-

ments are relatively harmless to healthy patients and beneficial

to diseased patients, the cost of a FN is greater than the cost of

a FP (Metz 1978).

Motivating example: protein marking data,
false positives, and the study of long-distance
dispersal

In long-distance dispersal studies employing protein marking

techniques, FNs are not nearly as problematic as FPs. When

an investigation is interested in the shape of the distribution of

dispersal distances, the presence of FNs simply decreases the

proportion of all captured individuals that are marked (preva-

lence), thereby reducing the power of the analysis. The impor-

tance of this cost is lessened because the marking technique

allows for the large-scale field application of protein markers,

which increases the prevalence ofmarked individuals.

The problem posed by FPs can be demonstrated by simulat-

ing the instantaneous point release of a marked population

that disperses according to simple diffusion. We simulated the

release of N0 = 10 000 marked individuals from a central

point (x = 0) along a linear array. Marked individuals moved

following a Gaussian distribution with mean (l) 0 and popula-

tion standard deviation (s) 2. Their distribution is a solution of

the simple diffusion equation (Okubo 1980):

Nðx; tÞ ¼ N0ffiffiffiffiffiffiffiffiffiffiffi
4pDt
p expð�x2=4DtÞ eqn 1

where N(x,t) is the density of marked individuals at posi-

tion x and time t. The diffusion coefficient, D, is a mea-

sure of the rate of population spread and is set equal to 2

in this simulation.

Following Kareiva (1982), individual movement was

restricted to the linear array ranging±L units from the release

point. At each distance )L £ x £ L, in addition to the marked
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Performance measure          Calculation

True positive rate              TP/(TP + FN)

True negative rate            TN/(TN + FP)

 
False positive rate            FP/(TN + FP)

False negative rate           FN/(TP + FN)

Fig. 1. Hypothetical distributions for unmarked (dark grey) and marked (light grey) populations and one possible decision threshold (dashed

line). The True Positive (TP), TrueNegative (TN), False Positive (FP) and FalseNegative (FN) rates are dependent on the choice of the threshold

value, and each rate is estimated using the calculations listed above (afterMetz 1978).
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individuals there wereU(x,t) = Y ) N(x,t) unmarked individ-

uals, where Y� Nðx; tÞ. A constant number of individuals

(Z) was then randomly sampled without replacement from the

set of N(x,t) + U(x,t) at each distance, resulting in
PþL
�L Z

individuals sampled. The sampled individuals were then ran-

domly assigned biologically realistic OD scores from their

respective distributions. Figure 2a demonstrates the distribu-

tions of TPs and FPs assuming the use of a threshold that pro-

duces a FP rate of 4%. Using eqn 5 in Kareiva (1982) we

estimatedD = 2Æ02 for the TP distribution, but when FPs are

added, the combined distribution yielded D = 3Æ57. FPs are
especially problematic in the tail of the distribution and lead to

an incorrect qualitative description of the distribution. Using

the nonparametric Kolmogorov–Smirnov test, we found that

the TP distribution is not significantly different from the distri-

bution predicted with simple diffusion (P = 0Æ999), but the
hypothesis of simple diffusion is rejected when tested against

the combined distribution (P = 0Æ011).
It is clear that a low FP rate is critical for protein marking to

be a viable technique for long-distance dispersal studies, where

the tail of the distribution is of primary interest. While we aim

to reduce the FP rate to zero, when distributions overlap the

choice of a threshold always involves a trade-off: placing the

threshold higher pushes FP rates down, but at the expense of a

higher FN rate. A high FN rate results in fewer marked indi-

viduals available for analysis. Because of this trade-off, the

optimal choice will often be associated with a small but non-

zero FP rate. Thus, it will generally be important to have a way

of estimating the FP rate so that the resulting data set can be

corrected for this error.

The conventional method for choosing a
threshold, and applications to ELISA

When the conventional threshold method is adopted for

the analysis of protein marking data it is critical to examine

the method’s underlying assumptions to determine whether

differences in application affect the method’s performance.

In its original rubidium context, the expected probability

that an unmarked individual will exceed the threshold is

0Æ0013; we expect 1Æ3 cases in 1000 unmarked individuals to

be erroneously classified as marked. This FP rate is depen-

dent on the assumption that the distribution of unmarked

values is normal. In reality, this assumption is rarely met,

and distributions are often skewed to the right (Sutula et al.

1986). The FP rate also depends on the implicit assumption

that a large number of known unmarked samples are con-

sidered with setting the threshold. Analysis of rubidium-

marked samples is done on an individual basis, and all of

the known unmarked samples tested can be considered in

the selection of the threshold value. The assay of protein-

marked samples, on the other hand, is done on 96-well mi-

croplates, which batches samples, and uses a small number

of unmarked individuals to determine the threshold for

each plate.

ELISA plates typically contain sample(s) known not to

contain the protein (negative controls), sample(s) known to

contain the protein (positive controls), and samples where

the presence of the protein is unknown (e.g. field collected

samples). In this study, we evaluate one common plate

design, where each plate has eight negative controls and 80

field collected samples (Fig. S1a, Supporting Information).

The remaining eight wells typically contain a combination

of wells with only a buffer solution (blank wells) and posi-

tive controls (the known target protein). While ELISAs are

widely used, a serious limitation of the technique is the vari-

ability commonly observed between microplates (plate

effects; Clark & Adams 1977). Because of this variability

between ELISA plates, thresholds have typically been calcu-

lated on a plate-by-plate basis. In protein marking studies,

the conventional threshold is applied as:

Threshold ¼ lj þ 3sj eqn 2

where lj and sj are the mean and the sample standard

deviation, respectively, of the eight negative controls on

plate j. We will now investigate the effect of choosing a

threshold based on a sample of eight negative controls on

the FP rate associated with the conventional method.
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Fig. 2. Recapture distributions for individuals scored as marked

using (a) the conventional threshold (FP rate = 4%) or (b) the maxi-

mum negative control threshold. The maximum negative control

threshold was applied to standard normal variate transformed data.
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Problems with the conventional threshold

FP RATE IS MASKED

A serious and unexpected problem with the conventional

threshold (eqn 2) is that it masks the FP rate. Recall that the

expected FP rate for this method is 0Æ0013. To test this expecta-
tion, we simulated a set of 10 000 plates, populating each plate

with 88 negative control OD scores drawn from a normal dis-

tribution. The first eight OD scores were designated as the

plate’s ‘negative controls’ and the plate’s threshold was calcu-

lated using eqn 2. The plate’s eight negative controls were then

compared to this threshold, and any case with an OD score

greater than the threshold value was considered a FP. Across

the 10 000 plates, the observed FP rate was zero (no samples

were identified as FPs, instead of the 104 that we expected to

observe).

This unexpected failure to observe FPs among the negative

controls results from the small number of negative controls on

each plate and an unfortunate circularity inherent in the

threshold algorithm. Because there are only eight negative con-

trols per plate, each value has a large effect on s. When a plate

contains a negative control sample with a very high OD score,

the estimate of s is elevated. This in turn increases the threshold

to such an extent that the very high OD score (which would

have been categorized as a FP had a large number of negative

controls been used to calculate the threshold) now falls below

the threshold and is classified as a negative. In Appendix S1

(see Supporting Information) we demonstrate analytically that

the conventional threshold will entirely mask FPs when there

are £ 10 negative controls per plate.

We can ‘unmask’ the FPs within the negative control sam-

ples by calculating a threshold using all of the negative control

samples on a plate other than the OD score under evaluation

(n = 7). For each plate we calculated eight different thresh-

olds, with each threshold excluding one of the negative control

values on that plate. This method revealed the previously hid-

den FP rate: the observed average FP rate across the 10 000

plates was 0Æ016 ± 0Æ041 (±SD). The substantially elevated

FP rate (0Æ016 vs. the expected 0Æ0013) is addressed in the fol-

lowing section.

FP RATE IS HIGHER THAN EXPECTED

A second major problem with the conventional method is

that it yields a FP rate that is substantially higher than

expected. To demonstrate this problem we present a simple

extension to the simulation described above. As in the previ-

ous simulation, a plate of 88 OD values was drawn from a

normal distribution of negative control values and the plate’s

threshold was calculated from the eight negative controls.

The OD score for each of the 80 samples on the plate was

compared to the calculated threshold value; any case with an

OD score greater than the threshold value was considered to

be a FP. The FP rate for each plate was then calculated as

(the total number of FPs on that plate) ⁄80. This procedure

was replicated 10 000 times.

The simulation revealed a FP rate of 0Æ013 ± 0Æ033 (±SD).

Thus, 1Æ3 in 100 individuals drawn from the simulated negative

control sample were erroneously categorized as marked. The

observed FP rate is an order of magnitude greater than the

expected FP rate (0Æ0013, or 1Æ3 individuals per 1000 samples).

This inflation occurs because the small negative control sample

size generates substantial variability in estimates of s. On plates

where s is substantially underestimated, the resulting threshold

can be quite low – lower than several of the scores drawn from

the negative control distribution – yielding FPs. Some plates

will have no FPs, while others may have several (see example

in Supporting Information, Fig. S1b,c). Across all of the

plates, the result will be an average FP rate that is substantially

higher than expected.

The hidden FP rate revealed in the previous section (FP

rate = 0Æ016) is slightly larger than then FP rate observed in

this simulation (FP rate = 0Æ013). The former is calculated

from n = 7negative controls, while the later is calculated from

n = 8; this difference illustrates that the smaller the sample size

of the negative controls, the greater the escalation of the FP

rate.

FP RATE IS FURTHER ELEVATED WHEN DATA ARE NOT

NORMALLY DISTRIBUTED

A third problemwith the conventional thresholdmethod arises

when the assumption of normality is notmet; non-normal data

will often be associated with still higher FP rates. When a dis-

tribution is skewed to the right, as is frequently the case for

negative control data, the area under the curve in the right tail

of the distribution is larger, resulting in a higher FP rate (Flei-

scher et al. 1986;Hopper &Woolson 1991; Hsu 2007).

We demonstrate this problemwith one of our own data sets,

a mark–capture study investigating movement of Lygus hes-

perus (Hemiptera: Miridae). In this study, 5Æ7 hectares of

alfalfa were sprayed with a solution of chicken egg whites. We

use individuals collected before the spray as negative controls

and individuals collected immediately after the spray as posi-

tive controls. Each individual was tested for the egg marker

with an ELISA (for ELISA methodology see Jones et al.

2006).

As seen in Fig. 3, the distributions of Lygus negative and

positive controls overlap. Furthermore, the distribution of Ly-

gus negative controls deviates from normality (Fig. 3a; Shap-

iro Wilk W statistic = 0Æ85, P < 0Æ0001). The tail of the

distribution is skewed to the right, with kurtosis = 5Æ59, and
thus the distribution is described as leptokurtic (kurtosis

> 3Æ0; Okubo & Levin 2001). For our leptokurtic negative

control data set we repeated the simulation described in the

previous section (which had revealed a higher than expected

FP rate of 0Æ013). The average FP rate observed after 10 000

runs of the model was 0Æ044 ± 0Æ057 (±SD), more than 3· as

high as observed for normally distributed data.

We can now summarize the full extent of the problem associ-

ated with the conventional threshold method: from an initial

expectation of 1Æ3 FPs in a sample of 1000 negative controls,

we see that the conventional approach can generate 44 FPs in a
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sample of 1000 negative controls. At the same time, this error

is masked, so that the researcher may be misled into believing

that the originally expected FP rate (0Æ0013), or one still lower
(0Æ00), is in place.

A proposed solution

We now propose a novel algorithm for choosing a threshold

that addresses each of the three problems explained above. To

solve these issues themethod should be one inwhich (i) the true

FP rate is revealed, so that we can estimate it; (ii) the experi-

menter can choose the FP rate to match the aims of the study;

(iii) the algorithm is robust to deviations from a normal distri-

bution ofOD scores; and (iv) the algorithmworks well for data

sets with or without substantial plate effects.

PLATE EFFECTS AND THE STANDARD NORMAL

VARIATE TRANSFORMATION

As demonstrated above, the conventional threshold method is

problematic in large part because it is applied on a per-plate

basis, which introduces issues associated with small sample

sizes. This immediately suggests one possible solution: pool all

negative control samples across plates to produce a larger sam-

ple of negative controls fromwhich s can be calculated.

The pooling of negative controls across plates is not a

good solution, because it ignores the plate effects that moti-

vated researchers to calculate thresholds on a plate-by-plate

basis in the first place. While steps can be taken to reduce

variability between plates, it is rarely possible to eliminate

plate effects entirely. The influence of plate effects on s esti-

mated from a pooled sample can be observed by simulating

scenarios with varying severities of plate effects. In each sce-

nario we simulated 10 000 plates populated with samples

drawn from a normal distribution (l = 0Æ00; s = 1Æ0). For
each plate we drew a single ‘plate effect’ value from a second

normal distribution (l = 0Æ00; r varied; the larger the value

of r, the larger the plate effect). This plate effect value was

then added to each of the 88 plate values, and s was calcu-

lated in two ways. In Method 1, s was calculated on a plate-

by-plate basis, as is done in the conventional threshold

method, and the mean of the 10 000 estimates of s was

taken. In Method 2, a subsample (n = 10 000) of the 80 000

negative controls was pooled and s was estimated from these

10 000 negative control values. This procedure was then

repeated 10 000 times.

The results are summarized in Fig. 4. Method 1 provides a

consistently accurate mean estimate of s as the variability

between plates increases, but there is substantial variation in

the estimates of s across plates (which leads to the inflation of

the FP rate). For Method 2 we observe that increasing the

magnitude of plate effects causes increases in the estimate of s.

This increase in s will produce a strong increase in the thresh-

old, and thus an undesirable decrease in the TP rate.

To address the problems associated with estimating s of the

negative control distribution, we suggest the use of the stan-

dard normal variate (SNV) transformation for all OD scores

on a plate. The SNV transformation (z) for sample i on plate j

is:

zij ¼
ðXij � l̂jÞ

sj
eqn 3

where Xij is the OD score of a sample in well i on plate j,

and l̂j is an estimate of the mean of the negative controls
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Fig. 3. Distribution of optical density scores of field collected Lygus

samples tested for egg protein. (a) Negative controls (n = 232). The

data do not conform to a normal distribution, (Shapiro Wilk W

statistic = 0Æ85, P < 0Æ0001) and the distribution is categorized as

leptokurtic (kurtosis = 5Æ59). (b) Positive Controls (n = 30).
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on plate j. When transforming the 80 samples on the plate

l̂j is estimated from all eight negative controls, but when

transforming the negative controls l̂j is calculated using

only the other seven values. If the negative control values

are not transformed in this way a problem arises that is

similar to the masking problem demonstrated with the

conventional threshold (see section fp rate is masked).

One simple and effective way to obtain a serviceable estimate

of sj is to calculate sj for the eight negative controls found on a

given plate, repeat this across many plates, and average the

multiple estimates (see ‘Method 1’ in Fig. 4). By averaging

across multiple estimates, we avoid the problem of estimating

sj from a small sample of observations. We suggest, however,

that some improvement in estimating sj may be obtained by

anticipating a likely relationship between l̂j and sjwhen viewed
across many plates. The relationship between l̂j and sj can be

approximated using a power law function, which averages

across values of sj observed for plates that have similar l̂j val-

ues. The power law function should provide a good estimate of

sj even when the estimated slope of the function is not signifi-

cantly different from zero (in that case, the method essentially

reverts toMethod 1).

The power law function, originally from Huxley’s simple

allometry equation (y = bxm), is

sj ¼ cl̂k
j eqn 4

The parameters k and c are estimated by taking the natural log-

arithm (ln) of eqn 4

lnðsjÞ ¼ lnðcÞ þ klnðl̂jÞ eqn 5

and regressing the ln of s on the ln of l (e.g., Caciagli &

Verderio 2003). The values used in the regression are the

l and s of the eight negative controls of each plate.

Substituting eqn 4 into eqn 3, the final equation for the SNV

transformation becomes:

zij ¼
Xij � l̂j

cl̂k
j

 !
eqn 6

Because the SNV transformation accommodates the varia-

tion introduced by plate effects, transformed data from multi-

ple plates can be pooled prior to setting a threshold. This is

true both for samples whose origin (i.e. marked or unmarked)

is unknown and for the negative controls, facilitating the selec-

tion of a single threshold value.

CHOOSING THE FP RATE

Although the conventional threshold is used widely and is thus

viewed bymany as the defaultmethod for choosing a threshold

value, the choice of a threshold remains subjective, and the best

approach will depend on the research question and the amount

of uncertainty that can be tolerated. For studies of long-dis-

tance dispersal, where it is desirable to have a low FP rate, we

suggest that one useful approach is simply to set the threshold

just above the highest observed negative control z score, as first

proposed byHopper &Woolson (1991).

When the threshold is set just above the highest observed

negative control score, it is tempting to infer that the FP rate

associated with this threshold is zero – there are no negative

control scores greater than the threshold. But for any given dis-

tribution of negative control scores, the largest observed value

is expected to increase as sample size increases (Hopper 1991).

Thus, simply because we do not observe any negative control

scores greater than our chosen threshold does not mean that

the FP rate is zero.

ESTIMATING THE FP RATE BY BOOTSTRAPPING

One way to estimate the FP rate is to use the resampling tech-

nique of bootstrapping. Using this technique, we sample with

replacement from a set of negative control scores to generate

many test data sets of equal size to the original data set. The

overall expectation for the FP rate can then be calculated as

themean of the FP rates observed across a large number of test

data sets (Verbyla &Litvaitis 1989).

We demonstrate this procedure with our Lygus data set. We

first SNV transformed the data by determining the relationship

between l̂ and s of the negative controls on a given plate. As

seen in Fig. 5, for the 30 plates that assayed Lygus individuals

for the egg marker, the slope parameter, k = 1Æ215 ± 0Æ388
(±SE), and the y-intercept, ln(c) = )0Æ968 ± 1Æ063 (±SE).

Thus, the SNV transformation was applied to the Lygus data

as:

Zij ¼
Xij � l̂j

expð�0�968Þl̂1�215
j

 !
eqn 7

y = 1·215x – 0·968 
R = 0·508 
P = 0·0041 
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Fig. 5. Linear regression of the natural logarithm (ln) of the standard

deviation of the negative controls from each plate (n = 30) vs. the ln

of their respective means. From the regression equation we estimate

the power law parameters: k = 1Æ215 and ln (c) = )0Æ968.
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By bootstrapping the original data set 10 000 times we calcu-

lated an expected FP rate of 0Æ0025 ± 0Æ0040 (±SD), or an

expectation that 2Æ5 in 1000 unmarked individuals will be

incorrectly classified asmarked.

THRESHOLD METHOD COMPARISON: POSIT IVE

PREDICTIVE VALUES

To compare the method proposed in this study (the ‘maximum

negative control’ algorithm) with the conventional approach,

we applied both methods to our Lygus data set and calculated

the TP, TN, FP, and FN rates (Table 1). We also examined

the performance of the conventional approach applied to SNV

transformed data. For this case study, the maximum negative

control method achieves a large improvement in the FP rate

(0Æ0025 vs. 0Æ0444, a decrease of 94%) at the cost of only a

modest increase in the FN rate (0Æ175 vs. 0Æ138, an increase of

27%).

Although different methods for choosing a threshold can be

evaluated in part by comparing the metrics shown in Table 1,

these values are affected by the prevalence of marked individu-

als. A useful metric that captures how well a given threshold

method performs when applied to a set of samples whose state

(i.e. marked or unmarked) is unknown is the positive predictive

value (PPV; Zweig & Campbell 1993; Hsu 2007). The PPV is

the probability that individuals of unknown state will be cor-

rectly classified asmarked given that their ODscores are higher

than the threshold. This metric is dependent on the ratio of the

FP rate to the TP rate and, crucially, on the prevalence of

marked individuals:

PPV ¼ 1

FP rate
TP rate

� �
1 - Prevalence
Prevalence

� �
þ 1

eqn 8

We used the PPV to compare the maximum negative control

threshold method to the conventional threshold method for

prevalence values ranging from 0Æ1 to 50% (Fig. 6). The maxi-

mum negative control method has a higher PPV than the con-

ventional method or when the conventional threshold is

applied to SNV transformed data. The improvement is espe-

cially substantial when prevalence values are relatively low

(e.g., 1–10%), as expected in studies of long-distance dispersal.

It is important that an experimenter be able to choose a

threshold that results in a low FP rate and a high TP rate,

reflected in a high PPV value. For the maximum negative con-

trol threshold, a large pool of negative controls is needed to

have a lowFP rate. If the total pool of negative control samples

is small, an experimenter might elect to set the threshold one or

two standard deviations higher than the highest observed neg-

ative control value.Whatever the chosen threshold, the FP rate

is then still quantifiable with the bootstrapping technique

described in this study. The threshold procedure proposed here

thus affords the experimenter substantial flexibility in choosing

the FP rate.

Application of the new threshold method to
dispersal data

We now return to the 1-dimensional dispersal simulation pre-

sented earlier to demonstrate the improvements of themethod-

ology presented here. The distributions presented in Fig. 2a

were generated when the simulated samples were randomly

placed on ELISA plates and analysed following the conven-

tional threshold method. To demonstrate the improvements

gained using the new threshold method, the OD scores from

the same simulated ELISA plates were SNV transformed.

After the transformation the highest negative control value

across all of the plates was chosen as the threshold value, and

all of the individuals were compared to that threshold. The

average numbers of TPs and FPs at each distance over 1000

runs of the model are shown in Fig. 2b. As in the earlier dis-

persal simulation, we estimatedD for the TP distribution alone

(D = 2Æ02) and when FPs were included (D = 2Æ12). Further
improvement to our estimate of D was gained when we cor-

rected the data for the estimated FP rate = 0Æ0025; after this
correction, D = 2Æ04. Finally, we tested each distribution

using the nonparametricKolmogorov–Smirnov test and found

that neither the TP distribution alone (P = 0Æ999), nor the dis-
tributionwith FPs (P = 0Æ304) was significantly different from
the distribution predicted with simple diffusion.

Discussion

Protein markers are appealing as a marking method for study-

ing movement because they are inexpensive, easy to obtain,

analysed with a sensitive and specific ELISA, and can be

applied to a large number of individuals directly in the field. As

a result, the use of this marking technique continues to grow in

popularity. While the technique has been used successfully in

Table 1. Comparison of different thresholdmethods in terms of their performancemeasures (±SD)

Method TP rate TN rate FP rate FN rate

Conventional 0Æ8621 ± 0Æ0418 0Æ9556 ± 0Æ0573 0Æ0444 ± 0Æ0573 0Æ1379 ± 0Æ0418
SNV transformed 0Æ8667 0Æ9845 ± 0Æ0068 0Æ0155 ± 0Æ0068 0Æ1333
Max Neg Control 0Æ8247 ± 0Æ0322 0Æ9975 ± 0Æ004 0Æ0025 ± 0Æ004 0Æ1753 ± 0Æ0322

The ‘conventional’ threshold calculates the threshold on a plate-by-plate basis using the model: Threshold = l + 3s. The ‘SNV trans-

formed’ method uses the same model as the conventional threshold but first SNV transforms the data to remove the plate effect. ‘Max

Neg Control’ chooses the highest SNV transformed negative control value as the threshold.

SNV, standard normal variate; TP, true positive; TN, true negative; FP, false positive; FN, false negative.
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small-scale movement studies (Jones et al. 2006; Boina et al.

2009; Horton, Jones & Unruh 2009), it has yet to be used to

study long-distance dispersal. One difference between studies

of local and long-distance dispersal is the prevalence ofmarked

individuals at the furthest sample distances. In long-distance

dispersal studies, where the expected prevalence of marked

individuals is very low at the furthest sampling distances, the

presence of FPs can drastically alter dispersal estimates. Thus,

it is important to have a low FP rate. In this study, we deter-

mined that the FP rate associated with the conventional

threshold ismuch higher than the expected value (0Æ0013) when
applied to protein marking data analysed using ELISA. We

have introduced a new approach that allows the investigator to

choose a threshold and estimate the FP rate with bootstrap-

ping, thereby avoiding the need to make assumptions about

the underlying distributions. The precision of the FP rate esti-

mate is improved with the use of the SNV transformation,

which controls for between-plate variability.

Plate effects are widely recognized as being important in

ELISA assays. Previous work has attempted to reduce differ-

ences between plates by using microplates from a single manu-

facturer and by batching all assays in a particular experiment

(Clark & Adams 1977; Fenlon & Sopp 1991). Fenlon & Sopp

(1991) recognized the importance of combining information

across plates to improve threshold estimates. To do this, they

used calibration data on all plates to remove between-plate dif-

ferences. They also suggest that including more negative con-

trol samples on each plate (they only had two) has a large effect

on the estimate of s. It is clear from the work presented here

that the greater the number of negative controls on a plate, the

better for estimating s, but increasing the number of negative

controls trades off with having wells available for testing

experimental samples. The SNV transformation we describe

controls for between plate differences without sacrificing a

large number of wells on each plate.

Our study underscores the importance of testing a large

number of known unmarked andmarked individuals (negative

and positive controls). As discussed above, when the threshold

is set as the maximum negative control value, the resulting FP

rate is determined by number of individuals tested as negative

controls. Furthermore, it is critical to have an accurate picture

of both the unmarked and marked distributions to quantify

the amount of overlap between them and the resulting influ-

ences onFP andTP rates.Measures can be taken prior to anal-

ysis of ELISA data that can further separate the negative and

positive control distributions and reduce the classification

errors discussed in this study. Such procedures include using a

stop solution, lower concentrations of the secondary antibod-

ies, and a dual-wavelength reading of each well (V. Jones, pers.

comm.).

The ability to quantify the FP rate associated with a particu-

lar threshold might lead some observers to suggest that,

regardless of the magnitude of the FP rate, we should be able

to correct the data for that error. However, the FP rate is

always estimated with some uncertainty. If, then, the FP rate is

large relative to the prevalence (frequency) of truly marked

individuals, the uncertainty in the FP estimate can introduce

unacceptable levels of uncertainty in the corrected data. This is

basically a case where the signal (i.e., prevalence of marked

individuals) to noise (i.e., the FP rate) ratio becomes too small

to achieve the desired confidence in the corrected data set. This

underscores the importance of a working with a low FP rate in

studies of long-distance dispersal. Our hope is that themethod-

ologies presented here will improve researcher confidence in

dispersal estimates generated from protein marking data and

encourage the use of this technique for the study of long-dis-

tance dispersal.
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Supporting Information

Additional Supporting Information may be found in the online

version of this article:

Appendix S1. Mathematical argument that the ‘conventional algo-

rithm’ for setting a threshold results in a masking of the actual false

positive rate.

Figure S1. (a) Microplate layout evaluated in this study, where there

are eight empty wells in the first column (Blank), eight negative

control samples in the 12th column (Neg), and 80 samples of

unknown origin (grey cells). (b) Plate where the standard deviation

of the negative controls, s (splate 1 = 0Æ013), is similar to that of the

original negative control distribution, and the calculated threshold

(Thresholdplate 1 = 0Æ086) is sufficiently large to classify correctly the

samples on the plate as unmarked. (c) Plate where s (splate 2 = 0Æ0042)
is less than that of the original negative control distribution. The

resulting threshold (Thresholdplate 2 = 0Æ064) is too small to encom-

pass the full variation of the negative control distribution, and as a

result three of the samples on the plate are incorrectly categorized as

positives (FPs highlighted in the shaded cells).

As a service to our authors and readers, this journal provides

supporting information supplied by the authors. Such materials

may be re-organized for online delivery, but are not copy-edited

or typeset. Technical support issues arising from supporting infor-

mation (other than missing files) should be addressed to the

authors.
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Appendix 1 

Here we present the argument that the ‘conventional algorithm’ for setting a threshold results in 

a masking of the actual false positive rate.  We show that for a small number of negative controls 

(

€ 

N ≤10) the threshold is always larger than the largest negative control value. 

For a set of negative controls

€ 

xi{ }i=1
N , assume 

 

€ 

x1 ≤ x2 ≤ x3 ≤ ...≤ xN  [1.1] 

where N is the number of negative controls. 

Let 

€ 

µ =
1
N

xi
i=1

N

∑  be the mean of the negative controls.  Then  

 

€ 

µ ≤ max
i=1,...,N

xi{ } = xN  [1.2] 

 

€ 

⇒ xN −µ ≥ 0. [1.3] 

Let 

€ 

s2 =
1

N −1
(xi∑ −µ)2  be the variance of the negative controls.  Then

 

 

€ 

s2 ≥ 1
N −1

(xN −µ)2  [1.4] 

 

€ 

⇒ s ≥ 1
N −1

(xN −µ). [1.5] 

From inequality [1.5] and from the definition of the conventional threshold (where the 

€ 

Threshold = µ + 3s) we see that 



 

€ 

Threshold = µ + 3s ≥ µ + 3 1
N −1

(xN −µ) [1.6] 

 

€ 

Threshold ≥ 3
N −1

xN −
3
N −1

−1
 

 
 

 

 
 µ + µ . [1.7] 

By adding and subtracting xN to inequality [1.7] and factoring we get 

 

€ 

Threshold ≥ 3
N −1

−1
 

 
 

 

 
 xN −µ( ) + xN  [1.8] 

From equation [1.3] we know that 

€ 

(xN −µ) ≥ 0 , therefore if 

€ 

3
N −1

−1
 

 
 

 

 
 ≥ 0 then 

€ 

Threshold ≥ xN .  

€ 

∴ If 

€ 

N ≤10 then 

€ 

Threshold ≥ xN =max xi{ }. 

  




