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ABSTRACT Abbott’s formula may be used to correct bioassay data for control response
and has become a standard in bioassay evaluation. Although Abbott’s formula provides an
estimate of p, (the mean biocassay treatment response corrected for control response), it
does not provide a measure of associated variance. The current practice of retaining the
variance estimate for p,,, (the mean bioassay treatment response not corrected for control
response) and applying it to g, is invalid. This invalid procedure results in an exaggeration
of the reliability of the estimate of f,,, and a confidence interval for g, that is centered
around an inappropriate value, We present a technique to incorporate a correction for control
response into the statistical analysis of bioassays conducted with only a single or small number
of treatments, which may be qualitative classes rather than a series of doses. The proposed
solution is based upon established techniques for estimating the variance or confidence interval
of a ratio of normally distributed variables. The analysis suggests two implications for bioassay
experimental design and evaluation: first, the optimal allocation of bioassay replications to
control and experimental treatments generally occurs when the number of experimental
replications is equal to or slightly greater than the number of control replications, and second,
bicassay data should be corrected for control mortality more frequently than is currently
recommended. Only if such a correction has negligible effects on both 3., and Var(g,.,,) can

it be safely omitted.
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BI0ASSAYS THAT COMPARE the physiological or be-
havioral responses of two or more groups are widely
used in the biological sciences. Probit analysis, which
can incorporate a correction for control response,
may be used to analyze experimental data when
bioassay treatments consist of a graded series of
doses (Finney 1971). However, many bioassays are
done with only a single or a small number of treat-
ments that may be qualitative classes rather than
a series of doses. For example, mortality generated
by a single pesticide residue on organisms sampled
from different populations might be compared in
a study of pesticide resistance. A behavioral study
might compare orientation responses of parasitoids
reared on different hosts to a common chemical
cue. Tumor induction frequencies of a single mu-
tagen dose on different age classes of an organism
might be compared. In such cases in which bicas-
says are done without a graded series of doses,
observed responses to experimental treatments must
still be corrected for control response, thereby pre-
venting the confounding of treatment effects with
differences between control groups. For example,
different age classes of an organism may show dif-
ferent spontaneous tumorigenesis rates indepen-
dent of a mutagen’s action, thereby confounding
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mutagen treatment effects with differences be-
tween the untreated age classes.
Abbott’s formula (Abbott 1925) is

ﬁcxp — ﬁcan( (1)

l - p_conl
where p,,, is the mean control response, p,,, is the
mean experimental treatment response, and p,,,, is
the mean experimental treatment response cor-
rected for control response. The formula is a means
of correcting bioassay data for control response and
has become a standard in bioassay evaluation (Bus-
vine 1971, Neal 1976, Hewlett & Plackett 1979,
Hubert 1984). (Mean responses, p,,., and p.,,, are
calculated by averaging the observed proportion
responding across replicates; thus, if we suppose
that r, is the number of responding subjects out of
n, total subjects in replicate i, withi =1, 2, ...,

I

I, then p = 1/1'2 r./n.)

i=1

p_CO" =

In this paper we show that Abbott’s formula
alone is an incomplete correction for control re-
sponse because it fails to provide an estimate of
variance for p,, (Var(p,.)). Failure to compute a
valid estimate of Var(p,,,,), and specifically a failure
to consider the variance associated with p,,,, results
in an overestimate of the reliability of the measured
value of p,, and in a confidence interval for g,
that is centered around an inappropriate value.
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These errors may lead to invalid statistical infer-
ences when responses of different experimental
groups to bioassay treatments are compared. We
conclude by discussing implications of this study
for experimental design and analysis of bioassays.

The Problem

Abbott’s formula provides a convenient formula
for computing p,,.,. Because Abbott’s formula in-
cludes a ratio of variables, p_, will be a biased
estimator of the population mean experimental
treatment response corrected for control response
(Cochran 1977, Buonaccorsi & Liebhold 1988), but
the magnitude of the bias will be negligible in most
cases. Abbott’s formula does not provide a means
to calculate an associated variance. The variance
of p,. is not, in general, equal to Var(p,,); by
rearranging Abbott’s formula,

P =1 — L= @)

L = Peons

the value of Var(p,,,,) is instead clearly determined
by the variance of the ratio of two variables (1 —
Per,) and (1 — P, ). Var(p,,,,) therefore incorporates
variance components contributed by both #,,, and
Poon- We should not, therefore, continue the com-
mon practice of simply retaining the variance es-
timate associated with p,,, and applying it to f,,,.

A Proposed Solution

Despite the apparent simplicity of the bioassay
experimental design and Abbott’s formula, a sim-
ple, elegant means of generating a variance esti-
mate for ., does not appear to be available cur-
rently, except for very large data sets for which
special assumptions become valid. As clearly stated
by Cochran (1977), discussing the ratio estimate R
= y/x: “The distribution of the ratio estimate has
proved annoyingly intractable because both y and
x vary from sample to sample. The known theo-
retical results fall short of what we would like to
know for practical applications.”

Before we consider a special-case solution and a
more general solution, one statistical assumption
implicit to Abbott’s formula needs to be made ex-
plicit. Abbott’s formula (Equation 1) may be rear-
ranged to yield:

(1 - ﬁexp) = (1 - ﬁccm-)(l - ﬁconl) (3)
Thus, Abbott’s formula implies that the probability
of lack of response in the experimental treatment
(1 — P,.,) is equal to the product of the probability
of lack of response in the control (! — P,..) and
the probability of lack of response to the experi-
mental treatment effect corrected for control re-
sponse (1 — P.,..). This multiplication of the control
and experimental effects is valid only if they are
statistically independent. Thus, Abbott’s formula
assumes statistical independence of control and ex-
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perimental responses (Busvine 1971, Finney 1971,
Hewlett & Plackett 1979, Hoel 1980).

A Special-Case Solution. Cochran (1977) de-
scribes conditions under which a formula for the
variance of a ratio estimate may be used. These
conditions will generally be met when the control
and experimental bioassay treatments are repli-
cated >30 times and the coefficients of variation
of p,, and p,,,, equal to SE(p.,.)/P.., and SE(p,,,.)/
Deoms» TESPectively, are <0.10 (Cochran 1977). A
formula for the variance of $,,, may then be ob-
tained by modifying Equation 6.13 of Cochran
(1977) to incorporate assumptions appropriate for
bioassay experimentation (i.e., we are sampling
from an infinite population and, as discussed above,
P.., is independent of p,,,):

1
(1 - ﬁcmu)2

[Yartpwm) | (1= Pw)
nexp 1 - ﬁcmll

Var(p o)
e @

where n,_, and n,,, are the number of replications
for the experimental and control treatments, re-
spectively (see also Finney [1978] and Buonaccorsi
& Liebhold [1988]).

Apparently, however, the restrictive conditions
required for applying this formula will not be met
by most bioassay data sets, for which n,_, and n,,,
are <30. A general solution is therefore required.

A General Solution. Unfortunately, a general
solution for the variance of a ratio estimate has not
been developed in the statistical literature (Coch-
ran 1977). Techniques for generating confidence
intervals for ratio estimates are, however, available
(Elston 1969, Cochran 1977, Finney 1978) and may
be used to analyze bioassay data.

The method developed by Elston (1969) appears
to be the simplest to apply. This method assumes
that the variables whose ratio is being considered
are distributed normally. This assumption appears
reasonable for most bicassay data sets for at least
two reasons. First, if we assume that the individual
probability of response, p, is fixed, bioassay vari-
ation between replications will generally follow
some sort of binomial distribution. The normal ap-
proximation to the binomial distribution should,
therefore, describe the distribution of p,,,, and p,,,
between replications whenever the number of in-
dividuals tested per replication, n, is adequate to
justify the normal approximation. As a rule of
thumb, Sokal & Rohlf (1981) suggest that the nor-
mal distribution will closely approximate the bi-
nomial when n-p-(1 — p) = 8.

Second, Abbott’s formula calculates the ratio of
P and P, rather than p,,, and p,., (see Equation
2). Thus, even if p,,, and p,,, are not distributed
exactly normally, their sampling means will be dis-



April 1989

tributed approximately normally under the central
limit theorem (Finney 1978, Sokal & Rohlf 1981).
The central limit theorem is universally valid only
when the number of replications averaged to yield
a mean is large; various rules for the minimum
number of replications ranging from 10 to 30 have
been suggested in the literature. However, when
the distribution of replication values is itself nearly
normal, as for most biocassay data, the requirement
for a large number of replications becomes less
stringent (Freund 1981, Sokal & Rohlf 1981). We
present Elston’s (1969) method with the caveat that
data sets should be examined to ensure confor-
mance with the assumption of normality. Confi-
dence limits for P, may then be calculated as
follows:

(-5, + t
(1 = P (L = Prons)
(1-g 1-2g)

.[(1 _ g)<Var<p,m>)

Mo

(1 - p.)Var(p,.) |
(l - ﬁmx)z'nmt

+ (5)

where
- Var(pcmu) ‘£

a (1 - ﬁmr)z‘nm:

(6)

t is chosen from the t distribution with the desired
alevel and n — 1 degrees of freedom, and n is the
lesser of n,,, and n,,,. Note that as g approaches
zero, Equation 5 becomes analogous to the special-
case formula (Equation 4).

The Significance of the Problem

To assess the magnitude of the error incorpo-
rated into bioassay data evaluation by assuming
that Var(p,,.,) = Var(p..,), we can compare the con-
fidence limits obtained from Equation 5 with the
confidence limits that would have been generated
had the variance in g, been ignored, i.e.:

¢ Rl
P = 1 (1 - ﬁcom)
. t,_(Var<p,m)>‘ -
Ny

where t' is chosen from the ¢ distribution with n,,,
— 1 degrees of freedom.

In the following calculations, hypothetical bioas-
say data sets are simulated by assuming that 20
individuals are tested per replication and that the
individual probability of response in the experi-
mental treatment, P, is equal to 0.5. (In general,
the magnitude of the error generated by assuming
that Var(p,,,) = Var(p,,,) will decrease as p,,, in-
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Fig. 1. Comparison of confidence interval widths for

... that incorporate variance associated with g, (Equa-
tion 5) (open squares) and that ignore variance in p,,,,
(Equation 7) (solid squares). Bioassay data simulated with
Pew = 0.5, n,, = 10, and n,,,, = 5.

creases from 0.0 to 1.0.) In addition, to make data
sets more realistic, we include random “vial ef-
fects” (i.e., the random error incorporated into
bioassays by subtle biological differences between
replications and differences in the treatment ap-
plied to different replications) by multiplying the
binomial standard deviation between replications
by a scaling or heterogeneity factor of 2.0 (Finney
1971, Nelder 1985, Preisler 1988). Between-repli-
cate variance was therefore calculated as Var =
4-(p-q/n), where n = 20, p is the per-individual
probability of response, and g =1 — p.

Confidence Interval Width. Ignoring the vari-
ance associated with p_,,, exaggerates the reliability
of the estimate of #,,,. For hypothetical bioassay
data with n,,, = 10, n_,,, = 5, and 0.00 = 5, =<
0.25, confidence intervals calculated with Equation
7 are substantially narrower (18.5-56.2%) than those
calculated with Equation 5 (Fig. 1). The magnitude
of this effect increases with increasing p..., (Fig. 1).
Note that even if p,,,, = 0.0, and therefore g = 0.0,
the confidence interval generated by Equation 7
will be narrower than that generated by Equation
5 if the number of degrees of freedom associated
with Equation 7 (n,, — 1) is greater than that
associated with Equation 5 (the lesser of n,,, — 1
and n_,, — 1) (Fig. 1).

Confidence Interval Location. A more subtle
difference between the confidence intervals gen-
erated by Equations 5 and 7 is the difference be-
tween the location of their midpoints. The ratio
estimate is biased, the bias becoming more pro-
nounced for small sample sizes (Cochran 1977). In
general, the sampling distribution of the ratio es-
timate is skewed right for ratios with positive val-
ues. (This may be understood intuitively by con-
sidering the rapidly increasing value of the ratio
when the denominator approaches zero.) Reflect-
ing the bias of the ratio estimate, Equation 5 locates
the midpoint of the confidence interval at 1 — [(1
= Pep)/(1 = Poone)/(1 — g)), whereas Equation 7
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Fig. 2. Comparison of the locations of confidence
interval midpoints for g, that incorporate variance as-
sociated with §,,, (Equation 5) (open squares) and that
ignore variance in p,, (Equation 7) (solid squares).
Bioassay data simulated with p,, = 0.5, n,,, = 10, and
N = O

locates the midpoint at 1 = (1 = $,.,)/(1 = Bopn)
(Fig. 2).

Implications for Bioassay
Design and Evaluation

To provide a valid estimate of variance for g,
variances contributed by both p,,, and g, must
be considered. Therefore, use of Equations 4 and
5, which provide estimates of the variance or con-
fidence interval of a ratio of normal variates, should
replace the current standard analysis, which in-
correctly assumes that Var(p,,,) = Var(p,,,) (Equa-
tion 7). Equation 4, valid only for large data sets,
provides a formula for variance which can then be
used in parametric statistical tests of between-group
differences. For large data sets, Equation 4 should,
therefore, be preferred to Equation 5, which pro-
vides only a confidence interval for p,,. Failure of
confidence intervals generated by Equation 5 to
overlap is a conservative criterion for statistically
significant differences in response between groups.

Neal (1976) suggested that Abbott’s formula be
applied to bioassay data whenever control response
exceeded 10%. Although control response values
<10% will generally have only small effects on the
value of f,.,, they may continue to make substantial
contributions to Var(p,,,) (Fig. 1). Therefore, bioas-
say data should be corrected for control response
more regularly than is currently recommended.
Only if such a correction has negligible effects on
both $.,, and Var(p,...) can it be safely omitted.

The statistical treatment of bioassay data pro-
posed here creates a new consideration for bioassay
experimental design: what is the optimal allocation
of bioassay replicates to control and experimental
treatments? Because the variance or confidence in-
terval width for g, is related ton,,, and n,, through
Equations 4 and 5, the choice of n,,, and n,,, will
be important. For an analysis of optimal allocation
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Fig. 3. Confidence interval widths for ., calculated
with different allocations of 20 replicates to control and
experimental treatments. m, optimal allocations for each
level of control mortality; solid squares, #.,,, = 0.25; solid
triangles, p.... = 0.05; open squares, P, = 0.01. Confi-
dence interval widths >1.6 are not shown.

of bioassay replicates based upon the variance es-
timate for a ratio of variables presented in Equation
4, see Buonaccorsi & Liebhold (1988). Fig. 3 pre-
sents confidence interval widths generated by
Equation 5 for simulated bioassay data with p,,, =
0.50; g = 0.01, 0.05, and 0.25; and n,, = n,,, +
1. = 20. Clearly, the width of the confidence
interval is strongly dependent upon the relative
allocation of replicates to control and experimental
treatments (Fig. 3). ., is estimated least precisely
when n., » n,, or n,, < n,, Although the
optimal allocation varies with the value of §,.,, the
narrowest confidence intervals are generated over
a wide range of values when n,,, is equal to or
slightly greater than n,,,. Because the optimal al-
location will vary with p,,, P... Var(p,,), and
Var(p..), no allocation will be optimal under all
conditions. If approximate values of these param-
eters are known from previcus experiments or pilot
studies, the construction of curves such as those
shown in Fig. 3 should provide a useful guide for
bioassay experimental design.

Control response is a nearly universal element
of bicassay experimentation, We have attempted
here to develop a sound means of incorporating a
correction for control response into the statistical
analysis of data generated in bioassays employing
a single or a small number of experimental treat-
ments. Developing techniques for adjusting data
for control response will continue to be necessary
to complete the development of new techniques of
bioassay analysis (e.g., Roush & Miller 1986, Ta-
bashnik et al. 1987, Preisler 1988).
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