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Abstract

Ecoinformatics, as defined in this review, is the use of preexisting data sets
to address questions in ecology. We provide the first review of ecoinformat-
ics methods in agricultural entomology. Ecoinformatics methods have been
used to address the full range of questions studied by agricultural entomolo-
gists, enabled by the special opportunities associated with data sets, nearly all
of which have been observational, that are larger and more diverse and that
embrace larger spatial and temporal scales than most experimental studies
do. We argue that ecoinformatics research methods and traditional, exper-
imental research methods have strengths and weaknesses that are largely
complementary. We address the important interpretational challenges asso-
ciated with observational data sets, highlight common pitfalls, and propose
some best practices for researchers using these methods. Ecoinformatics
methods hold great promise as a vehicle for capitalizing on the explosion of
data emanating from farmers, researchers, and the public, as novel sampling
and sensing techniques are developed and digital data sharing becomes more
widespread.
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Data velocity: data
collection per unit
time; often high (e.g.,
real time) in Big Data
approaches

1. INTRODUCTION

The era of big data is here. Our ability to collect vast quantities of data, store them, and retrieve
them digitally, along with advances in computational power and sophisticated algorithms for the
analysis of large data sets, is offering new opportunities for understanding and predicting the
behavior of complex natural systems (17, 87). If investment in big data by large agricultural corpo-
rations and the rise of startups that handle ecological data and analytics are any indication, there
is great promise in what big data can provide society (33, 70, 88). For researchers to contribute to
realizing that promise, however, we need to develop research methods that respect the differences
between big data and traditional experimental data sets.

Ecoinformatics (see the sidebar titled A Working Definition of Ecoinformatics) is the appli-
cation of big data methods in ecology (see also 12, 53, 76, 93, 122). Ecologists and entomologists
have been using approaches we would now refer to as ecoinformatics for at least 75 years. For
example, Waloff (137) and Carpenter (23) used data from historical texts, maps, and museum
records to reconstruct migratory locust (Locusta migratoria) outbreak patterns and pathways of
colonization into Europe using records dating back to 300 CE. Thus, it is fair to ask, is big data in
entomological research just old wine in new bottles, or are there new features of ecoinformatics
in the digital age that warrant more careful examination? Here we provide the first review of
ecoinformatics studies in agricultural entomology, as we attempt to answer this question.

We focus on applications of ecoinformatics methods to questions in agricultural entomology,
occasionally drawing from related disciplines (forest entomology, insect conservation, medical
entomology, and plant pathology) to identify additional opportunities and techniques. We place
ecoinformatics in the context of more traditional experimental entomological science (so-called
small data) (74) and highlight the possible pitfalls associated with ecoinformatics methods. As in
other fields (39, 72, 82, 94, 122), the use of ecoinformatics in entomology will likely only expand.
Innovations in big data technology invite entomologists to adapt their research approaches, acquire

A WORKING DEFINITION OF ECOINFORMATICS

Ecoinformatics as defined here refers to ecological studies that use preexisting data (12, 72, 122). Ecoinformatics data
sets used in agricultural entomology have, thus far, been almost entirely observational, and thus our review addresses
observational data sets as a key element of current ecoinformatics methods. In the future, however, ecoinformatics
built on composite experimental data sets should grow in importance (74). Ecoinformatics is an offshoot of big data
research methods in that ecoinformatics data sets are characterized by high data volume, high data variety, and, often,
high data velocity [see Ekbia et al. (39) for an excellent discussion of definitions of big data]. Many ecoinformatics
studies achieve their central insights by integrating multiple data streams to create a composite data set for analysis.
By using preexisting data, and thus freeing researchers from the burden of generating every datum with their
own labor, ecoinformatics creates opportunities for working with data sets that are substantially larger than those
generated by experimentation (larger number of observations) and that can embrace a larger number of potential
predictor or response variables (more diverse data sets) (94). For this reason, ecoinformatics methods are particularly
attractive when researchers wish to investigate ecological processes that occur at spatial or temporal scales that are
too large to be addressed easily with experimentation, or when larger data sets are needed to resolve small, but still
economically important, effect sizes. Ecoinformatics methods often require careful data management and statistical
analysis because of the large and heterogeneous data streams and the serious interpretational pitfalls associated with
observational data sets. Ecoinformatics methods are often best used in combination with experimentation, which
has unique strengths in identifying causal relationships.
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Citizen science:
research collaborations
between the public and
scientists to collect,
explore, and analyze
data on the natural
world

Crowdsourcing:
participatory activities
that use groups of
people to solve
problems or carry out
tasks; recently
facilitated by the
Internet

Passive surveillance:
monitoring of a
community or process
by analyzing
unsolicited reports or
collections of
information

new skills, and increase collaborations with experts in areas outside of traditional entomology,
including biostatisticians and computer scientists.

2. ECOINFORMATICS IN AGRICULTURAL ENTOMOLOGY

We review studies that use ecoinformatics methods (preexisting data sets that are almost invari-
ably observational; see the sidebar titled A Working Definition of Ecoinformatics) to address
questions in agricultural entomology. We surveyed the published literature, attempting to review
key examples of ecoinformatics methods applied to the full diversity of questions in agricultural
entomology. No simple search terms were available to uncover the relevant literature, and we
apologize to authors whose works were omitted inadvertently. To characterize the ecoinformatics
literature with some simple quantitative metrics, for each reviewed study, we recorded (a) the data
set size (number of replicates included in the core statistical analysis); (b) the temporal scale of the
data set (number of years covered); and (c) the diversity of the data set (number of explanatory
variables included). Few authors quantified the spatial extent of their data sets, so we did not
attempt to record the spatial scale of the studies.

Our survey of the literature highlights several important features of ecoinformatics studies
(Table 1). One theme of our review is that ecoinformatics methods and traditional, experimental
methods each have advantages and disadvantages, with the strengths of one largely complementing
the weaknesses of the other. Thus, these two methods can gainfully be used together.

2.1. Sources of Data

Studies obtained data from a range of old and new sources of information, including public and
private data archives, citizen science and crowdsourcing, social media, and distributed and remote
sensing technologies (114). Data can be collected intentionally to answer a specific entomological
question, or they may be the by-product of other sampling programs, with data being repurposed
to answer new questions.

2.1.1. Federal, state, and private data repositories. International, national, state, and local
agencies regularly collect and store a diversity of environmental, agricultural, and entomological
data (e.g., http://traps.ncipmc.org/, http://sba.ipmpipe.org/cgi-bin/sbr/public.cgi, https://
datcpservices.wisconsin.gov/pb). For example, monitoring programs often map the occurrence
of insect pests and attempts to control or eradicate them (97, 123, 133). Insects are also intercepted
through port-of-entry monitoring and inspection of produce (5) [e.g., Port Information Network
(52, 81)], with samples often deposited in entomological collections for identification (130).
Surveys of agricultural producers, including beekeepers, provide additional means of tracking
population trends or occurrence of alien species, pests, or pathogens (21, 136). In addition,
agricultural cooperatives and private pest management consultants are regularly engaged in insect
sampling as part of integrated pest management programs (36, 45, 46, 91, 112, 120). As data
collection itself becomes increasingly digital (132), we expect the accessibility of data on insects
in agriculture to expand dramatically.

2.1.2. Indirect sampling and passive surveillance. Insects can be monitored indirectly by
tracking the consequences of their activities, such as damaging plants, and this gives researchers a
method for inferring insect abundances, distributions, or phenologies. For example, the presence
of insect-vectored pathogens has been used to infer aphid activity (126). This passive surveillance
approach is most commonly used with insects of medical importance via detection of disease
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Table 1 Complementary strengths and weaknesses of traditional, manipulative experimentation and ecoinformatics
methods for agricultural pest management research

Project stage Attribute Experimental approaches Ecoinformatics approaches

Building a data set Data uniformity,
completeness, quality

Researcher has direct control of
data collection

Data collection is decentralized, biases
may be present in population sampled

Flexibility Any variable the researcher can
manipulate can be examined,
creating opportunities to
evaluate novel conditions not
manifest in the field

Only conditions already present in the
field can be evaluated

Privacy concerns Data are often collected on
research farms, sidestepping
privacy issues

Farmers or other data holders may be
unwilling to share data

Spatial and temporal
scale of the data

Often much smaller than the scale
of farming or other process being
examined

Often matches the actual scale of
farming or process being examined

Size of resulting data sets Data sets are often too small to
resolve the effects that dictate
farmer decisions (e.g., yield)

Data sets may be 10–100 times larger
than experimental data sets, boosting
statistical power

Cost efficiency Labor costs of data collection are
high

Preexisting data can be used at small
cost

Analysis and
inference

Ability to evaluate many
variables

Experiments rarely examine more
than a few variables at once

May be particularly valuable when
many variables must be screened

Between-replicate
variation

Reduced between-replicate
variation increases statistical
power

Data sets are often noisy, decreasing
statistical power

Causal inference Stronger Weaker

From research
results to adoption
of new
recommendations
by farmers

Ease of extending
research results to
implementation by
farmers

Experimental research is often
conducted in off-farm settings,
divorcing researchers from
farmers

When data come from farmers, farmers
can be involved from the start

Results may only be valid under
conditions of the experiment

Data sets can embrace the full range of
farming conditions

Farmers are sometimes skeptical of
results conducted in small,
experimental research plots

Farmers may have greater confidence
in recommendations emerging from
their own data

Within each row, the entry in boldface has the more desired characteristics.

occurrences recorded by health agencies (15, 68) or, more recently, through Internet search
behaviors (49). Pesticide-use patterns obtained from farmer surveys can also be used as a proxy
for pest activity (78, 79, 89, 90).

2.1.3. Citizen science. The Internet has greatly facilitated connections between scientists
and amateur naturalists, generating data on insect occurrences at broad spatial and temporal
scales (18, 37). Citizen-based monitoring can work well for easily identifiable insects such as
butterflies and bees (http://www.naba.org/butter_counts.html) (58, 86, 96, 108), lady beetles
(47), and moths (44). A recent development is Internet-enabled portals for data collection
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that make it easy for amateur naturalists to upload images or observations on plants and
animals (http://bugguide.net, http://www.bumblebeewatch.org, http://iNaturalist.org,
http://www.projectnoah.org, https://www.usanpn.org) (142). Another form of citizen-driven
entomological data collection is the crowdsourcing of transcription or interpretation of archived
records such as museum labels (https://www.zooniverse.org) (57).

2.1.4. Academic data. An important additional source of information is data already published
by other researchers. Until recently, many data sets analyzed in published papers were diffi-
cult to obtain in their raw form, but this is rapidly changing (e.g., https://www.idigbio.org,
https://www.dataone.org, http://vegbank.org, http://datadryad.org, http://www.gbif.org).
Calls by academics, professional societies, journals, and funding agencies to improve data
sharing will ultimately make data more available for reuse (http://www.nature.com/sdata,
http://esapubs.org/archive) (53, 59). This should expand the availability of experimental, rather
than observational, data sets for ecoinformatics analyses.

2.2. Building a Data Set

Ecoinformatics data sets often differ in several key respects from the more familiar data sets that
researchers gather with their own hands.

2.2.1. Data quality. Given the diversity of entomological data sources and collection methods, it
is not surprising that ecoinformatics data sets may be highly heterogeneous. Some ecoinformatics
data sets may not reach the quality standards expected by researchers (29, 47, 77, 124). Ecoin-
formatics data sets that combine multiple sources of data that use different sampling methods
can create especially difficult problems (109). An obvious advantage of researcher-led studies is
that there is better control over data collection, and thus, one can achieve high standards of data
completeness, uniformity, and quality, while implementing protocols that minimize biases.

2.2.2. Flexibility. Experimental methods also have a key advantage in their tremendous flexibility:
As long as the experimentalist can implement the manipulations needed to create a condition of
interest, any situation can be studied. In contrast, observational data sets are limited to studying
current farming practices and simply cannot address novel, not-yet-adopted methods or ranges of
variation not commonly observed in commercial settings (80, 111).

2.2.3. Privacy concerns. Experimental methods are less affected by a problem that can be
paramount in gathering ecoinformatics data: data privacy. Publication of data gathered for ecoin-
formatics, if not done thoughtfully, could impinge on the personal privacy of farmers or other
agricultural professionals who may not have known their information was being collected. In addi-
tion, farmers may not be eager to share information on yield or details of crop or pest management,
as such information may be viewed as strictly proprietary (29).

2.2.4. Size of data sets. Ecoinformatics data sets are often quite large, placing ecoinformatics
at least partially under the umbrella of big data research methods. Our survey of the agricul-
tural entomology ecoinformatics literature revealed that data sets average nearly 10,000 replicate
observations {Figure 1a; mean number of observations = 9,934 ± 3,795 [standard error (SE)]
(range: 20–290,101)}. Although we did not attempt to produce a comparable sample of experi-
mental studies, it is clear that ecoinformatics data sets are orders of magnitude larger than typical
experimental data sets (e.g., see review in 112). Use of preexisting data offers substantial cost

www.annualreviews.org • Ecoinformatics in Agricultural Entomology 403

A
nn

u.
 R

ev
. E

nt
om

ol
. 2

01
7.

62
:3

99
-4

17
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a 
- 

D
av

is
 o

n 
01

/3
1/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.

http://bugguide.net
http://www.bumblebeewatch.org
http://iNaturalist.org
http://www.projectnoah.org
https://www.usanpn.org
https://www.zooniverse.org
https://www.idigbio.org
https://www.dataone.org
http://vegbank.org
http://datadryad.org
http://www.gbif.org
http://www.nature.com/sdata
http://esapubs.org/archive


EN62CH22-Rosenheim ARI 22 December 2016 13:29
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Figure 1
Survey of published studies using ecoinformatics methods in agricultural entomology. Shown are (a) the size of the data set assembled
(i.e., the number of replicate observations included in the main data set), (b) the number of years for which observations were available,
and (c) the number of explanatory factors examined for possible influences on the response variable of interest (note log scales on the
x axes).

savings, and it is these cost savings that make it possible to assemble larger data sets (29, 47,
66, 131). Although experimentation can, in principle, produce data sets of any size, large data
sets are costly; for example, a rare experimental study that achieved levels of replication and spa-
tial coverage that approached that seen in ecoinformatics studies was achieved with a budget of
£6 million (≈US$8.8 million) (129).

2.2.5. Temporal and spatial scales of data sets. Some processes, such as the influence of
the landscape on colonization of crops, the effects of multiyear crop rotations on pest densi-
ties, or effects of climate, cannot be studied effectively in small-scale or short-term experimental
plots. Ecoinformatics data sets cover an average of 20.5 (mean) ± 2.8 (SE) years (range: 1–140)
(Figure 1b), including several multidecadal data sets. These are, in general, much longer than
typical researcher-led data sets in agricultural entomology or plant-herbivore-predator interac-
tions more generally (112, 117). Ecoinformatics studies may also reach regional (89), continental,
or even global (10, 48) spatial scales.

2.3. Statistical Considerations, Inference, and Pitfalls

It is easy for observational studies with large sample sizes to create the illusion of power and valid-
ity when, in fact, errors in measurement, selection bias, and unexplained confounding factors can
undermine interpretations (19, 125). These lessons have been hard learned in medical epidemiol-
ogy (134), where analysis of large observational data sets has a longer history than in agricultural
entomology. Similarly, ecoinformatics methods primarily use observational data; consequently,
observed associations between any two variables need to be interpreted cautiously. The axiom
that “correlation does not imply causation” does not disappear just because a data set is large (17).
Here we give examples of potential pitfalls in working with ecoinformatics data to demonstrate
the level of vigilance that is required and to show that, in some cases, statistical remedies exist for
these problems (see also 125).

2.3.1. Statistical power. One of the advantages of using larger data sets is the opportunity to
detect small effect sizes even when the underlying data are noisy. Statistical power analyses show
that pest management research often demands surprisingly large sample sizes to resolve key effects
successfully, even when effect sizes are large (135). Because insecticides are generally inexpensive
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relative to crop value, profit-maximizing farmers are often motivated to suppress pest populations
when only very small yield losses (typically ≈2%) are threatened. Such small effects generally
cannot be resolved with traditional experimentation (112) but can be characterized using larger
ecoinformatics data sets (111).

Nevertheless, caution must be taken in using small p values alone as sufficient evidence to reject
a null hypothesis and establish a biologically meaningful finding (103). Rather, use of multiple
diagnostics, including confidence intervals and estimates of effect size, will give a more robust
sense of the importance of the findings (103, 119). Incorporating expert information on prior
expectations could also be a valuable way to improve our understanding of patterns in the data
(67).

2.3.2. Bias. One of the most common sources of interpretational difficulty comes when samples
are selected nonrandomly from a larger population, creating a potential for bias in the response
being studied. Selection bias may frequently occur when a pest control method (e.g., cultural,
chemical, or biological control) is implemented nonrandomly across a population of crop fields or
farmers (e.g., 98). For example, Kathage & Qaim (71) found that more progressive cotton farmers
were more apt to adopt new Bt cultivars. Such farmers, however, might also be those likely to
produce higher yields, even without any boost conferred by the Bt cultivar, potentially creating a
spurious association between Bt cotton and high yields. This makes it difficult to understand the
true causal influence of genetically modified crops on yield. Another common example is when the
pests themselves express bias in their use of plants, making it difficult to understand the average
effect of pests on the entire population of plants. For example, pests may prefer high-vigor, high-
yielding host plants, which could result in a spurious association between pests and high yield and
an incorrect inference that plants overcompensate for herbivory (see discussion in 146). In general,
these biases, when not accounted for, could give an erroneous picture of the average response of
the population to a set of influencing variables and can significantly affect the interpretation of a
study, especially when the effect sizes are small (119).

It is possible to remedy such situations by matching populations of like groups and comparing
them only with respect to characteristics of interest (75; see also 134) or by including additional
factors as covariates in multiple regression models (see also the instrumental variable approach
used in 75, 82).

2.3.3. Number of factors examined. Ecoinformatics methods, and observational methods in
general, have a particular advantage in permitting researchers to explore associations between
many potentially influential factors and key response variables, in contrast to experiments, which
are typically limited to one or few manipulated factors.

Whereas many ecoinformatics studies are still narrowly focused on just a single variable, several
studies captured data on substantially larger sets of variables (Figure 1c; mean number of explana-
tory variables examined = 7.9 ± 1.8; range: 1–132). In the early phase of a research program that is
examining a poorly defined problem, it can be especially helpful to include many possible explana-
tory factors. The resulting exploratory analyses can help to formulate more focused hypotheses
that can then be examined in follow-up studies, including with experimentation (27, 29, 80, 91, 98,
120, 131). Data sets with many variables provide opportunities to explore potentially important
interactions that are difficult to implement in manipulative studies. How best to explore these
multidimensional data sets is an active area of inquiry (11, 50, 64, 91, 92, 101, 131).

There are challenges, however, in including a large number of potential response and predictor
variables in statistical models. Studies that include multiple variables that are themselves highly
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correlated (multicollinearity) can create severe problems of interpretation, which are difficult or
impossible to resolve through statistical means alone (41).

Spurious correlations can emerge from many other sources, recognized and unrecognized. For
example, variable weather can often drive changes in both pest densities and crop performance,
creating almost ubiquitous opportunities for spurious correlations. Inclusion of key weather vari-
ables as covariates can insulate the researcher against these problems. In some cases, important
unmeasured variables can generate patterns of spatial autocorrelation that can distort the results of
statistical modeling (9, 38); in these cases, analyses that model the spatial structure of the data are
needed (e.g., 89). Unrecognized (and therefore uncorrected) sources of spurious correlations are
the worst enemies of ecoinformatics methods, as they can create serious errors of interpretation.

2.3.4. Correlation and causation. Scientists have long debated how best to draw inferences of
causality (39, 73). In some disciplines such as physics, medicine, oceanography, and astronomy,
observational approaches play a central role in research (113, 114). In agricultural entomology,
however, an important goal is to develop research-driven recommendations that allow farmers
to implement management actions that result in desired outcomes (e.g., pest suppression). Only
knowledge of causal relationships can inform the farmer of the likely consequences of a particular
action. The power of well-designed manipulative experiments lies in their ability to circumvent
the pitfalls associated with observational studies (82). Thus, we reject the suggestion of the most
avid proponents of big data methodologies that knowledge of correlation alone can fully replace
knowledge of causation as our primary research goal (3, 87). As emphasized by Harford (55),
analysis based on pure correlations is “fragile,” because we often cannot anticipate what might
cause the correlation to break down and because spurious correlations always lurk as a threat (29).
For this reason, above all others, ecoinformatics will always be most valuable when used in tight
partnership with experimentation.

2.4. From Research Results to Adoption

When stakeholders, such as farmers or independent consultants, are the sources of ecoinformat-
ics data sets, they can be engaged in the research endeavor from the very outset of a project,
facilitating the integration of research and outreach. Farmers may have greater confidence in
recommendations that emerge from analyses of their own data, rather than small-plot research
conducted at a university farm (29). In addition, whereas experimental research is often performed
in narrowly controlled and agronomically optimal settings, ecoinformatics research can embrace
the full range of commercial farming conditions (141). Data sets that purposefully encompass a
range of heterogeneity also create opportunities to produce site-specific recommendations (67).

3. CONTRIBUTIONS OF ECOINFORMATICS STUDIES
TO AGRICULTURAL ENTOMOLOGY

Here we highlight research that has contributed to agricultural entomology using ecoinformatics
approaches. The ecoinformatics literature in agricultural entomology is diffuse, making it difficult
to do a systematic review. This is due in part to the long history of these research approaches, the
diversity of questions that researchers have addressed (and subdisciplines in which they occur), and
the creativity of approaches that have been used to explore observational data sets. Because the use
of ecoinformatics methods has been conducted without a common methodological framework,
and with minimal sharing of key methodological lessons learned by different research groups,
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researchers have in many cases been forced to reinvent key techniques. We hope that this review
will help to integrate the field, accelerating progress.

3.1. Documenting Pest and Disease Patterns

Ecoinformatics approaches have been especially fruitful in studying pest outbreaks, which often
occur at irregular intervals and are also heterogeneous in space. Collection of data over larger
temporal and spatial extents is often key for understanding underlying factors that drive pest
and disease dynamics. Coordinated data collection has been conducted by academic or federal
and state agencies such as the National Science Foundation–sponsored Long-Term Ecological
Research (LTER) sites (e.g., 6) and, more recently, the National Ecological Observatory Network
(69). The Rothamsted suction trap network has operated continuously since 1964 throughout the
United Kingdom to help understand relationships between long-term climate oscillations and
land cover/land use changes and the abundances and flight activity periods of aphids (see also 13,
14, 31). This sampling approach has been replicated in the midwestern United States (116) and
in mainland Europe, where Steinger et al. (127) related increases in potato virus Y incidence in
potatoes to aphid flight activity patterns. Ewald et al. (40) used long-term and highly replicated
Game and Wildlife Conservation Trust sampling in the southern United Kingdom to show how
insect populations quickly rebounded in grain fields in years after extreme weather events.

Ecoinformatics methods have been used to examine spatial and temporal scales of population
fluctuations (20, 45), long-term trends in pest densities (138), and localized and region-wide syn-
chrony in pest populations (36). Information on forest insect pests includes some of the longest
time series and spatially extensive insect information available. Aerial surveys or detailed invento-
ries of forest damage have been used to study landscape, climatic, and environmental correlates of
forest pest outbreaks; long-term population trends and cyclic dynamics; and associated economic
losses (2, 32, 54, 105, 143, 144).

3.2. Efficacy of Transgenic Crops for Pest Control

A large body of published studies in the entomology, agronomy, and economics literatures have
used ecoinformatics methods to quantify the consequences of transgenic crops (rice, cotton, corn)
on agricultural systems. The effect of Bt crops in particular on target and nontarget pests, as well
as pesticide use, labor costs of pest control, crop yield, crop profitability, the incidence of acute
pesticide poisonings, and other externalities, including predator densities, farmland biodiversity,
and soil and groundwater quality, have been examined using observational data (26, 27, 61, 75,
84, 85, 104, 106, 107, 118, 139). Analysis of long-term and spatially extensive data sets revealed
that large-scale adoption of transgenic Bt crops produced dramatic regional suppression of pest
populations: Pectinophora gossypiella in the United States (25) and China (140), Helicoverpa armigera
in China (145) and India (71), and Ostrinia nubilalis in the United States (62).

3.3. Landscape Context Effects on Crop Colonization by Pests

Ecoinformatics studies have been used to identify how the surrounding landscape influences pest
colonization of crops (123). Higbee & Siegel (56) identified pistachio orchards as a key source of
Amyelois transitella moths colonizing almonds, and Parsa et al. (98, 99) identified potato storage
units as the primary source of Premnotrypes spp. weevils colonizing potatoes in the Andes. Using
crop scout–provided data for the Central Valley of California, Sivakoff et al. (120) and Meisner
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Machine learning:
type of artificial
intelligence that uses
algorithms that allow
computer programs to
iteratively learn from
data

et al. (92) documented associations between specific surrounding crops and densities of Lygus
hesperus colonizing a focal cotton field.

3.4. Pest Impact on Crop Yield and Patterns in Pesticide Use

Spatially extensive data obtained from pest management consultants have been used to examine
the associations between cotton pests and yield losses. Results revealed that California farmers
were managing L. hesperus in cotton suboptimally: Growers were sustaining yield losses during the
early season by not suppressing pest populations sufficiently but overapplying pesticides during
the mid-season, when cotton could compensate fully for damage (92, 110, 111).

Pesticide-use data can also be an indirect indicator of pest activity in agricultural landscapes.
Ecoinformatics approaches have been used to evaluate the efficacy of traditional pesticides applied
under field conditions (98, 99). Farm-scale data have also been used to characterize the likelihood
that applications of broad-spectrum insecticides will trigger secondary pest outbreaks in California
cotton (51) and walnuts (128). In the midwestern United States, it has been shown that at the county
level, replacement of natural plant communities with cropland (i.e., landscape simplification) is
positively correlated with pest aphid abundance in suction traps and with increased pesticide use
(90)—a pattern that has also been borne out at the national level (79, 89, 147). Several studies
have also shown that differences between farmers are a key source of variation in overall pesticide
use, rather than regional or between-year effects (4, 89). Nevertheless, the ability to resolve these
associations consistently requires careful statistical corrections for issues of spatial autocorrelation
that can otherwise obscure the true effects of explanatory variables (89).

3.5. Beneficial Insects

Insects beneficial to agriculture have been the subjects of long-term monitoring. Records of un-
managed bees derived primarily from historical museum collections have been used to demonstrate
the declines of particular groups (8, 22, 115). Smyth et al. (121) harnessed the power of distributed
continent-wide citizen science to describe the range restriction of an exotic coccinellid, and Bahlai
and colleagues (6, 7) used a 24-year data set of lady beetle collections to evaluate how changing
agricultural practices influence species turnover patterns. All of these studies gained insights on
long-term dynamics of communities and on abundance and distribution of species from archived,
long-term data collected by others.

Contributions of beneficial insects to agricultural production have also been explored. Using
a grower survey of crop yields for an 11-year period, Gaines-Day & Gratton (46) studied the
relationship between honey bee stocking density and farm-level cranberry yield. Data from the
United Nations Food and Agriculture Organization and other governmental sources have been
used to evaluate honey bee colony population dynamics (95) to quantify the reliance of global food
production on pollinators (1) and to link dependency on pollinators with shortfalls of crop yield im-
provements, elevated variance in yield, and reduced yield responses to agricultural intensification
(35, 48).

3.6. Food Webs

Understanding the complexities of trophic interactions among organisms in diverse ecosystems
has always been a challenge. Bohan et al. (16) and Tamaddoni-Nezhad et al. (131) described an
innovative approach to automating the construction of agricultural food webs. Applying machine
learning methods to a previously collected data set of predator and prey densities and using

408 Rosenheim · Gratton

A
nn

u.
 R

ev
. E

nt
om

ol
. 2

01
7.

62
:3

99
-4

17
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a 
- 

D
av

is
 o

n 
01

/3
1/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.



EN62CH22-Rosenheim ARI 22 December 2016 13:29

automated text mining of the published literature to corroborate proposed trophic linkages, they
built a trophic web with 72 nodes and 407 links. Bohan et al. (16) suggested that the primary value of
this analysis was in generating hypotheses of novel, unsuspected trophic linkages. Indeed, in their
food web, the most striking novel links involving intraguild predation between carabid beetles and
spiders were later confirmed with DNA analysis of beetle stomach contents (34). This approach
illustrates the way in which insights from observational data can stimulate experimentation to test
specific proposed hypotheses.

3.7. Efficacy of Cultural Controls and Host-Plant Resistance

Management of insect pests using cultural practices and host-plant resistance has also been studied
using ecoinformatics. For example, Parsa et al. (100) synthesized decades of field trials of cassava
genotypes to identify traits, including leaf pubescence and root hydrogen cyanide, shaping resis-
tance to three cassava pests. Studies of the effects of crop rotation on insect pests demonstrated
the yield-enhancing effects of single- and multiyear crop rotation and also revealed that the ex-
act identity of the rotation crop matters (27, 91, 118). Carrière et al. (24) mined pink bollworm
pheromone trapping data to model how planting date could be adjusted to protect cotton from
early-season attack, and Higbee & Siegel (56) used data on almond infestation to calculate lev-
els of orchard sanitation (removal of mummy nuts harboring overwintering A. transitella larvae)
required to keep nut damage below an economic threshold.

3.8. Farmer Decision Making

In addition to examining the effects of management or environmental factors on pest and
beneficial insects, ecoinformatics methods have also been used to explore factors shaping farmers’
pest management decisions. For example, studies in China found that pesticide use was strongly
influenced by farmers’ anticipation of pest losses, preferences for pesticides that are cheaper
and less likely to poison workers, and risk aversion (60, 61, 75, 83, 139). Outreach by extension
service agents was generally unimportant in decisions to apply pesticides. The failure of extension
service agents to reduce pesticide use was hypothesized to stem from incentives provided to
extension agents, whose salaries are augmented by commissions earned on pesticide sales.

4. TEN-POINT CHECKLIST FOR ECOINFORMATICS STUDIES

The use of ecoinformatics in agricultural entomology suggests some clear advantages of these ap-
proaches but also highlights some important challenges. In summarizing the key themes found in
ecoinformatics studies in entomology, we propose ten best research practices to help avoid com-
mon pitfalls and to capitalize fully on the potential of ecoinformatics-based research. Although
many of these guidelines are useful for any study that uses observational and correlative ap-
proaches, several data-related issues (practices 2–6) are especially relevant to ecoinformatics studies
(Table 2).

5. RESEARCH NEEDS AND FUTURE OPPORTUNITIES

A broad community of researchers has used ecoinformatics methods to address a diverse array
of questions in agricultural entomology. Some research questions, where the spatial or temporal
extents of the underlying processes make them experimentally intractable or where effect sizes
are expected to be small, have been particularly amenable to investigation through ecoinformatics
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Table 2 Ten-point best-practices checklist for ecoinformatics studies

Point Topic Actions and issues confronted

1 Identify a research question Determine whether study is exploratory or has well-defined hypotheses.
Open-ended questions may result in a high number of variables or models
examined, increasing the chance of spurious relationships being detected, but
offer opportunities for hypothesis generation

2 Identify the primary preexisting
data set(s)

Data owners may be more likely to share data, even if privacy is a concern, if they
see clear value in answering the focal research questions

3 Seek out complementary data
streams

The value of ecoinformatics studies often emerges from integrating multiple,
disparate sources of data

4 Assess data privacy issues Obtain appropriate permissions and establish protocols for maintaining data
anonymity

5 Understand the data set and
evaluate potential biases

Understand how data were obtained. If possible, design a sampling approach for
data gathering, including randomized subsampling or stratification, such that the
data set is representative of the target population

6 Design data management and
workflows

Create system for data entry, quality control, standardization, error detection,
data exploration, and creation of summary statistics that can be automated.

Deposit data sets in data repositories using standardized metadata

7 Clearly define response and
explanatory variables and evaluate
potential confounding influences

Carefully consider the potential importance of confounding variables and include
measurements of possible confounders in statistical modeling. The importance
of this point cannot be overstated

8 Select an appropriate framework
for statistical analysis

Data exploration, formal modeling, and hypothesis testing should be consistent
with the question being addressed and the nature of the underlying data structure

9 Conclusions and inferences Frame conclusions carefully, including a critical assessment of competing
interpretations and the influence of any suspected confounders that could not be
measured. Expert opinion can be valuable in this step

10 Integrate findings with other
studies

Whenever possible, integrate correlational analyses of ecoinformatics data sets
with experimental studies to establish support for causal relationships

approaches. In combination with expert opinion, ecoinformatics tools can give insights into
relationships that were not conceivable at the onset of studies (e.g., 127). Although farmers
may be unusually receptive to research-driven recommendations derived from data gathered
from the true setting of commercial agriculture, most farmers are also entirely unfamiliar with
ecoinformatics research methods, creating challenges for outreach. Extension specialists will
need to explain ecoinformatics research and create outreach tools that maximize the utility of
ecoinformatics analyses—for example, in producing site-specific recommendations.

At the same time, we need to acknowledge the potential pitfalls associated with correlative
analyses and, in particular, the difficulties of distinguishing associations that reflect true causal
relationships from associations that merely reflect spurious correlations. Ecoinformatics methods
used uncritically could easily do more harm than good in entomological research. Ecoinformatics
methods can be used to generate hypotheses that can then be tested with focused experimentation,
combining the best of both worlds. Another valuable approach will be to take researcher-generated
(small data) data sets, and their inherent advantages, and link them together to achieve the advan-
tages of large data sets (74).

Ecoinformatics and big data approaches in applied entomological research are not new, will
not go away, and will continue to improve over time. The entomologist of the future working on
applied questions will have to be skilled at designing and implementing experimental studies as
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Bioinformatics: field
that combines
elements of biology
and computer science
to understand and
organize large volumes
of macromolecule data

well as have training in quantitative methods needed to work with observational data. Enabling
the data revolution in entomological research will require that we embrace a culture of data
sharing, understand the limitations of observational research, and collaborate with others in diverse
areas such as computer science, statistics, and engineering in order to understand the causes and
consequences of insect pests and how best to manage them.

FUTURE ISSUES

1. Embrace the advantages of ecoinformatics-based insights by combining ecoinformatics
methods with experimentation that tests mechanistic hypotheses and establishes causal
relationships (29, 84).

2. Collaborate with biostatisticians to address analytical challenges and strengthen the in-
terpretation of observational data (63, 103, 125).

3. Develop data sources that take advantage of citizen science and crowd-sourced data
collection to increase the rate and spatial extent of data gathering (18, 37, 42).

4. Work with engineers and computer scientists to create novel ways of automating the
detection and identification of arthropods and their activities in agriculture (28, 65, 102).

5. Develop mobile platforms operating pest management software applications for use in
agriculture that facilitate rapid data digitization, uploading to centralized databases, and
availability for ecoinformatics analyses and in-season management recommendations
(30, 43).

6. Borrow and adapt approaches used in bioinformatics research to create a cyberinfra-
structure to store, retrieve, and share ecoinformatics data (53, 59, 101).

7. Work with stakeholders in entomological subdisciplines to create data collection pro-
tocols and platforms that enable researcher-developed data sets to be standardized and
collated into exchangeable forms (74, 93).
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