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Abstract. Robust analyses of noisy, stage-structured, irregularly spaced, field-scale data
incorporating multiple sources of variability and nonlinear dynamics remain very limited,
hindering understanding of how small-scale studies relate to large-scale population dynamics.
We used a novel, complementary Bayesian and frequentist state–space model analysis to ask
how density, temperature, plant nitrogen, and predators affect cotton aphid (Aphis gossypii)
population dynamics in weekly data from 18 field-years and whether estimated effects are
consistent with small-scale studies. We found clear roles of density and temperature but not of
plant nitrogen or predators, for which Bayesian and frequentist evidence differed. However,
overall predictability of field-scale dynamics remained low. This study demonstrates stage-
structured state–space model analysis incorporating bottom-up, top-down, and density-
dependent effects for within-season (nearly continuous time), nonlinear population dynamics.
The analysis combines Bayesian posterior evidence with maximum-likelihood estimation and
frequentist hypothesis testing using average one-step-ahead residuals.
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INTRODUCTION

Population dynamics of insects in agricultural fields

may be affected by density dependence, complex trophic

interactions (Rosenheim 1998), exogenous factors such

as weather and plant conditions (Cisneros and Godfrey

2001), movement and landscape factors (Kareiva 1990,

de Roos et al. 1991, Tscharntke and Brandl 2004),

phenotypic plasticity (Nylin and Gotthard 1998, Miner

et al. 2005, Stillwell and Fox 2005), and other processes.

Field-scale, within-season time series of herbivore and

natural-enemy abundances and other factors have the

potential to shed light on several related questions: How

do results from small-scale field and laboratory studies

relate (or ‘‘scale-up’’) to field-scale processes (Carpenter

1996, Pascual and Levin 1999, Steele and Forrester

2005)? What is the relative importance of top-down vs.

bottom-up factors on herbivore dynamics (Shurin et al.

2002)? What is the overall predictability of herbivore

dynamics? However, analysis of such data has been very

limited in practice due to serious statistical challenges of

incorporating process and measurement variability for

fitting structured population models to data, and thus

robust analysis of the large-scale dynamics of such

systems has been very limited. Here we use a novel

synthesis of Bayesian and frequentist state–space models

to evaluate the roles of predators, density dependence,

temperature, and plant nitrogen on aphid population

dynamics at field scales in 18 cotton fields of California’s

San Joaquin Valley (USA) and their relationship to

extensive small-scale studies.

We chose the cotton aphid, Aphis gossypii, as a model

organism whose ecology is well known from experiments

in the laboratory, in small field enclosures, and in small,

replicated experimental field plots, but is unstudied at

the scale of agricultural fields. Laboratory and small-

scale field studies suggest that cotton aphid populations

may be influenced by many factors. First, A. gossypii

development and reproduction rates are affected by

temperature (Slosser et al. 1998, 2004), with maximum

reproduction at a relatively low temperature for a hot-

climate herbivore, ;258C (Akey and Butler 1989).

Second, as with many phloem feeding insects, A. gossypii

appears often to be nitrogen limited, and supplemental

N fertilization of cotton plantings generally results in

enhanced aphid densities (Slosser et al. 1997, 1998, 2004,

Cisneros and Godfrey 2001, Nevo and Coll 2001).

Third, intraspecific competition appears to be impor-

tant, especially at higher aphid densities, contributing to

subsequent population declines (Slosser et al. 1998,

2004). Finally, predators, and in particular Chrysoperla

spp. lacewings, appear to have the potential to suppress

cotton aphid populations when tested singly. However,

this potential appears to be lost, because lacewing larvae

are themselves consumed by other members of the

diverse predator community (Rosenheim et al. 1993,

1999, Cisneros and Rosenheim 1997, Rosenheim 2001).
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In summary, previous studies predict (1) that aphid

dynamics will be affected by temperature, plant nitro-

gen, and density dependence, and (2) that lacewings

have the strongest predation rate per individual but do

not typically develop large enough populations to

suppress A. gossypii. While some of the factors thought

to shape cotton aphid dynamics could in principle be

manipulated in full-field experiments (e.g., nitrogen

supplementation), others could not (e.g., predator

species composition). Whether or not insights obtained

at small scales can be extended to the full scale of

agricultural fields is unknown.

Our analysis synthesizes three advances in computa-

tional statistics methods, allowing complementary

Bayesian and frequentist insights. First, advances in

Markov chain Monte Carlo (MCMC) and other

numerical-integration methods allow incorporation of

process noise and measurement error in a nonlinear

state–space model framework. Most state–space model-

ing has used univariate (population size) models with a

fixed time step and no external driving variables either

for linear (Dennis et al. 2006) or nonlinear models (de

Valpine and Hastings 2002, Calder et al. 2003).

Examples of more advanced applications include age-

structured models (Meyer and Millar 1999, Besbeas et

al. 2002, de Valpine 2003, Newman et al. 2006); work on

plant disease dynamics (Gibson 1997); and work on pea

aphid–parasitoid dynamics using a two-species, stage-

structured model with daily time steps allowing time-

varying demographic parameters (Gross et al. 2005).

Here we use a two-stage model with density dependence,

accommodate irregularly spaced data by using a one-

day time step for the state dynamics, and allow effects of

temperature, plant nitrogen, and predator populations

in fairly general ways.

Second, we give maximum-likelihood estimates

(MLEs) for a nonlinear, stage-structured state–space

model, calculated using the Monte Carlo kernel

likelihood method (de Valpine 2003, 2004, de Valpine

and Hilborn 2005). Obtaining MLEs has been a

challenging problem for these models (de Valpine

2004), so most analyses have been limited to Bayesian

results and have not included MLEs or any estimate of

the statistical significance of model components.

Third, even given MLEs, frequentist hypothesis

testing poses challenges because likelihood ratio values

are difficult to estimate (Meng and Wong 1996, Chib

and Jeliazkov 2001, Mira and Nicholls 2004), and it is

unclear whether asymptotic chi-squared results for them

will be accurate. Residuals from state–space models—

another possible basis for frequentist hypothesis test-

ing—are nontrivial to define and calculate, and thus

have not typically been included in analyses. Here we

define ‘‘residuals’’ as the mean one-step-ahead prediction

error given all previous data (for a given time series)

given the MLE parameters. These one-step-ahead

residuals are approximately independent and allow

frequentist hypothesis testing of residuals vs. tempera-

ture, nitrogen, and predator data series, but calculating

them requires a new MCMC sampler for each datum. In

addition, use of one-step-ahead residuals allows evalu-

ation of the differences in predictive power between

models directly in terms of root-mean-squared-error

(i.e., average mean residual).

Complementary Bayesian and frequentist results are

given based on MCMC posterior distributions, maxi-

mum-likelihood estimates, and hypothesis testing using

the one-step-ahead residuals given MLE parameters. In

the results, Bayesian evidence about parameter(s)

comprises pairwise marginal posterior distributions of

parameters, highest posterior marginal density esti-

mates, the ratio of highest posterior marginal density

to density at zero (or some value of interest), and the

fraction of a posterior with density lower than the

density at zero. Frequentist evidence comprises maxi-

mum-likelihood estimates and regression tests of one-

step-ahead predictions vs. possible explanatory vari-

ables. For example, the significance of temperature is

tested by calculating one-step-ahead residuals from a

model without temperature and regressing those against

temperature. The combination of Bayesian and fre-

quentist evidence represents a practical, best-of-both-

worlds approach without getting bogged down in

philosophical debate (Clark 2005). The types of evidence

given here do not represent every type of Bayesian or

frequentist evidence that could be considered.

APHID AND NATURAL-ENEMY DATA

Data were collected from 10 fields in 1993 and 8 fields

in 1994, with no overlap of sites between years. We refer

to these data as ‘‘field-scale’’ because they are sampled

from 1–2 ha sections of agricultural fields. Approxi-

mately every week (range: 5–9 d), all nymph- and adult-

stage aphids were collected and counted from the fifth-

mainstem-node leaf of 50 plants (range: 44–55). At very

high densities, a subsample of ;10% of the collected

aphids was counted. Counts are reported and modeled

as number of aphids per 50 leaves.

Five of the most common and potentially important

predator taxa were counted from searches of 7 (median;

range 4–10; one sample of 3) whole plants and 6

(median; range 3–10) sweep-net samples. Whole-plant

counts included lacewing eggs and larvae (Chrysoperla

carnea, C. comanche, Chrysopa nigricornis (see Plate 1),

and C. oculata, in order of decreasing frequency); Orius

tristicolor (Hemiptera) (and rarely O. insidiosus)

nymphs; and nymphs of three Geocoris spp. (G. pallens,

G. punctipes, and [rarely] G. atricolor). Sweep-net counts

included the same Chrysoperla, Chrysopa, Orius, and

Geocoris species as well as nymphs of the larger

hemipteran predators Nabis spp. and Zelus renardii.

Sweep-net samples were obtained in a standardized

manner, and when both types of data were available (for

Chrysoperla, Chrysopa, Orius, and Geocoris) the joint

distribution of whole-plant counts and sweep-net counts

was modeled as a mixture of gamma-distributed
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abundances with Poisson measurements by each meth-

od, with a constant ratio of expected counts from the

two sampling methods (implemented numerically), and

the adjusted sweep-net count given the whole-plant

count was used in the model. Herbivorous spider mites

(Tetranychus spp.) were counted from the same leaf

samples as Aphis gossypii. Predator data were treated as

fixed covariates for the aphid model rather than treating

their dynamics in the state–space framework because

their dynamics do not appear to be strongly coupled to

the aphids and doing so would require additional

parameters and assumptions. Predator estimates were

linearly interpolated for days between measurements.

Plant densities were 5.7–26.6 plants/m, and aphid

densities were rescaled by multiplying by plants per

meter divided by 10.9 to correspond to the number of

aphids per 50 leaves at a plant density per 10.9 m, the

most common plant spacing. Percentage nitrogen was

measured in weekly petiole samples, which was also

interpolated between measurements to provide daily

covariates. It is recognized that petiole percentage

nitrogen does not directly measure phloem composition

(Youssefi et al. 2000, Karley et al. 2002), but it is used

here as a general measure of plant status that could be

predicted to correlate with aphid dynamics (Slosser et al.

1997, 1998, 2004, Cisneros and Godfrey 2001, Nevo and

Coll 2001). Temperature records were obtained from the

nearest weather station for each site. Figures reporting

all data and estimated aphid models are in the

Appendix.

APHID POPULATION MODEL

Inferences were conducted in the framework of a

standard stage-structured model extended to incorporate

bottom-up (plant nitrogen) and abiotic (temperature)

effects, endogenous feedbacks (density dependence),

top-down effects (predators), and environmental sto-

chasticity. Dynamics for aphid nymphs (A1) and adults

(A2) with daily time steps are as follows:

A1ðt þ 1Þ
A2ðt þ 1Þ

� �
¼ R1ðtÞexp½m1ðtÞ� 0

0 R2ðtÞexp½m2ðtÞ�

� �

� S1ðtÞ½1�MðtÞ� FðtÞ
S1ðtÞMðtÞ S2ð2Þ

� �
A1ðtÞ
A2ðtÞ

� �
: ð1Þ

Factors R1(t) and R2(t) incorporate density depen-

dence and predation, and m1(t) and m2(t) are environ-

mental stochasticity random variables, explained more

below; t is day and F is daily fecundity. Daily nymph

and adult survival rates, S1(t) and S2(t), respectively,

and nymph-to-adult maturation rate, M(t), each are

affected by nitrogen (centered at 1.4%) and temperature

(in degrees Fahrenheit, centered at 32) on a logit scale:

XðtÞ ¼ logit�1 logitðXÞ þ bT;X½TðtÞ � 32�
�

þbN;X½NðtÞ � 1:4�g ð2Þ

for X¼S1, S2, or M. Here T(t) and N(t) are temperature

and nitrogen, with coefficients bT,X and bN,X, respec-

tively; X is the value of X(t) when T(t) ¼ 32 and N(t) ¼
1.4; and logit(z) ¼ log[z/(1 � z)]. (All statistical models

were based on the Fahrenheit scale; for SI conversion:

8F � 32 ¼ 8C 3 1.8.) The fecundity model is

FðtÞ ¼ max Fþ bT;F½TðtÞ � 32� þ bN;F½NðtÞ � 1:4�; 0:01
� �

ð3Þ

where temperature and nitrogen have linear effects with

coefficients bT,F and bN,F, respectively, down to a

negligible minimum of 0.01. In the hypotheses consid-

ered here, the temperature and nitrogen effects (bT,X and

bN,X) are estimated only for fecundity (X ¼ F ) and

maturation rate (X ¼ M ). This choice avoids over-

parameterization yet allows an effect on input into each

stage class.

Factors R1(t) and R2(t) incorporate Gompertz density

dependence and predation with a saturated functional

response, Ri(t)¼ exp[�dia(t)� aPP(t)/A(t)], for i¼1 or 2.

Here A(t) ¼ A1(t) þ A2(t) is total aphid density; a(t) ¼
log[A(t)]; di is the strength of density dependence on

stage i ¼ 1 or 2; P(t) is the abundance of predators,

which are tested singly to limit the number of

parameters estimated in any one model; and aP is

predation strength for predator P. Predation strength is

assumed to be the same on nymphs and adults because

the predators are likely able to consume both stages, and

preliminary fits with stage-specific predation rates did

not improve results. Preliminary fits with a Type II

functional response indicated that only a saturation level

could be reasonably estimated from these data: with aP
aphids consumed per predator per day, daily prey

survival is 1 � aPP(t)/A(t), which is approximately

exp[�aPP(t)/A(t)]. In some studies the simplest one-

parameter functional response is considered to be the

Holling Type I linear response, with no prey saturation

of predators, but with the high aphid abundances

common in these data that would seem unrealistic.

PLATE 1. An adult lacewing, Chrysopa nigricornis, one of
several predators of the cotton aphid, Aphis gossypii, in cotton.
Photo credit: J. A. Rosenheim.
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Environmental stochasticity was modeled as bivariate

log-normal with the same variance for nymphs and

adults, i.e., (m1(t), m2(t)) has mean (0, 0), variances r2
m,

and correlation qm. The data estimates of nymph and

adult densities are D1(t) and D2(t), respectively. Mea-

surement error was modeled as bivariate log-plus-one

normal with the same variance for nymphs and adults,

i.e., log(Di(t) þ 1) has mean log(Ai(t) þ 1) and variance

r2
D, for i¼ 1 or 2. This was based on the experience that

adults and nymphs were equally detectable. Note that

the survival and maturation rates can range from 0 to 1,

but the environmental stochasticity is considered broad-

ly to include immigration, emigration, variability in

stage transitions, and other factors.

An important point about the model (Eq. 1) is that

even without density dependence the linearity of the

deterministic ‘‘skeleton’’ matrix model is combined with

non-Gaussian (log-normal) noise. For state–space mod-

els with (multivariate) linear dynamics and additive

Gaussian noise, the Kalman Filter can calculate

integrated likelihoods exactly (Dennis et al. 2006). For

the population matrix model (Eq. 1), however, the noise

is Gaussian on a log scale, for which the model is

nonlinear. Thus, even the simplest matrix model with

realistic noise leads to a nonlinear and/or non-Gaussian

state–space model, so the Kalman Filter does not apply.

MCMC and parameter prior distributions

A customized Markov chain Monte Carlo (MCMC)

sampler was developed to sample the posterior distri-

bution of all values of parameters and latent states (A1

and A2). Flat priors were used for all parameters, with

the range limits: F . 0.01; 0.001 , (S1, S2, M ) , 0.999;

�0.95 , q , 0.95; and�2 , bN,X , 2. For F and other

parameters the unbounded flat priors were improper,

but the MCMC nevertheless mixed well (i.e., there was

no infinite integral problem). The first three range

constraints promoted MCMC mixing by keeping

parameters off of boundary values, while the last

constraint avoided poor mixing (possibly non-integra-

ble) in a very low posterior density region.

Sequential model building

A sequential model-building approach was used, with

models fit in the order: Gompertz density dependence

with two parameters (GDD2, d1 6¼ d2); GDD2 þ
temperature effects on F and M (GDD2temp2),

GDD2 þ nitrogen effects on F and M (GDD2nit2),

GDD2 þ temperature and nitrogen effects on F and M

(GDD2temp2nit2); GDD2 þ temperature effect on F

(GDD2tempF); and GDD2tempF þ single-predator

effects (GDD2tempFpred1). In the final models that

include predators (GDD2tempFpred1), only the effect

of temperature on F was included because it appeared as

the only statistically significant temperature or nitrogen

effect, with concordant Bayesian evidence, from the

GDD2temp2 and GDD2nit2 models. The predator

model (GDD2tempFpred1) was run separately for each

predator data series.

Lacewings were of special interest because of their

potential role as strong aphid predators that are

suppressed by intraguild predation, but the lacewing

larvae data were relatively noisy, so the lacewing egg

data were also considered as a surrogate measure of

overall lacewing abundance.

Initial results that all predators showed evidence for a

positive predation parameter was biologically plausible

but raised the question of some unknown analysis

artifact giving spurious results. As one way to check

whether the positive predation parameters were some-

how an artifact of the estimation methods, the

herbivorous spider mite data were used as a ‘‘control’’

predator sequence, i.e., the model was fit as if

herbivorous mites might be predators. While mites

might have indirect interactions with aphids, such as

resource competition or apparent competition via

shared predators, the interaction would not necessarily

be expected to follow a predator model. Values of aP for

different predators correspond to either sweep-net or

whole-plant count data, which are not directly compa-

rable, but for species with both types of data (jointly

incorporated), aP is reported for both sweep-net and

whole-plant scales.

Maximum-likelihood estimation

and one-step-ahead residuals

The Monte Carlo kernel likelihood (MCKL) algo-

rithm uses weighted kernel density estimates of the

posterior parameter dimensions of the MCMC sample

to estimate the likelihood (de Valpine 2003, 2004, de

Valpine and Hilborn 2005). In this case the weights were

all uniform and the kernel was truncated (and renor-

malized) at the parameter boundaries. With many

parameter dimensions (e.g., nine for model GDD2: F,

S1, M, S2, d1, d2, rm, q, rD), the kernel estimation

requires a large bandwidth and may be inaccurate. To

improve estimates, after initial estimation the algorithm

was iterated with one or two parameter dimensions at a

time (chosen so that highly correlated dimensions were

paired) for 5–10 iterations. This was done by generating

an MCMC sample of the latent states and one or two

parameter dimensions with the others fixed, and using

MCKL to estimate the likelihood surface for those

parameters given the others, which can be quite

accurate.

The one-step-ahead predictions for A1(t) and A2(t)

were the mean latent states at time t from an MCMC

sampler run only for states up to (and including) t given

data prior to but not including t, with parameters fixed

at the MLE ( maximum-likelihood estimate); thus they

represent the model prediction for time t conditioned on

all the observations prior to t. Because the extent of data

used for the MCMC run that estimates the one-step-

ahead prediction for time t depends on t, a separate

MCMC run is required for each t, but these are efficient
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runs because the parameters are fixed. One-step-ahead

residuals (observed minus predicted) should be indepen-

dent for a reasonably fitting model, and indeed no field’s

residuals showed significant autocorrelation for any

models. Residuals were regressed against explanatory

variable (temperature, nitrogen, predators) either to see

whether those variables should be added to the model

or, if already included, whether the model adequately

captures their role. Significance levels of residual

correlations were calculated by bootstrap because of

apparent heteroscedasticity, and regressions of residuals

vs. a possible predictor variable did not correspond

exactly to the form of a relationship for building the

predictor variable into the state–space model. Prior to

these regressions, ANOVA was used to test the

assumption of no between-field variation in residuals—

i.e., whether the fields are really comparable—and

Tukey’s hsd method was used to identify different fields

for removal from the correlation analyses against

temperature, nitrogen, and predators.

RESULTS

Bayesian marginal posterior densities give insight into

parameter estimability and correlations (Figs. 1 and 2,

Table 1). For example, there is a ridge between higher F

(daily fecundity) and lower S1 (daily survival rate for

aphid nymphs), so the data do not strongly distinguish

between these parameters. A similar trade-off occurs

between maturation rate (M ) and adult survival rate

(A2), with apparently high uncertainty in these param-

eters. Nevertheless, the posterior distribution for the

basic demographic parameters was generally biological-

ly plausible. For example, Akey and Butler (1989), Xia

et al. (1999), and Kersting et al. (1999) reared Aphis

gossypii from different regions in labs across a range of

temperatures and found nymph development times in

the range of 4.5–8.5 days (corresponding roughly toM¼
0.12–0.22), net nymph survival in the 70–95% range

(corresponding to S1¼0.94–0.98 for a 6-d nymph stage),

total adult-stage duration in the range of 7–15 d

(corresponding roughly to S2 ¼ 0.86–0.93), and nymph

FIG. 1. Bayesian two-dimensional marginal posterior densities (from normal kernel density estimation) for a model with two
density-dependence parameters, one temperature parameter, and no predators (i.e., GDD2tempF). Each subfigure shows contours
and log-density differences of�1,�3,�5, and�7 from the maximum (‘‘3’’), corresponding to posterior density ratios of 0.37, 0.050,
0.0067, and 0.00091, respectively. Parameter pairings were chosen to illustrate the clearest parameter correlations and biological
interpretability. Roughness of contour lines at low densities reflects sparsity of sample points. Maximum-likelihood estimates were:
fecundity, F ¼ 1.94; nymph survival, S1 ¼ 0.95; maturation, M ¼ 0.20; adult survival, S2 ¼ 0.23; density dependence (DD) on
nymphs, d1 ¼�0.00071; density dependence on adults, d2 ¼ 0.079; bT,F ¼ 0.059; process variance, r2

m ¼ 0.10; process correlation
between nymphs and adults, q¼ 0.95; and measurement variance, r2

D ¼ 0.12.
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production per day (F ) in the range of 1–3, all

approximated from their data for relevant temperatures.

With the possible exception of adult survival, these

values are reasonably consistent with the posterior

distributions (for GDD2tempF in Fig. 1). Density-

dependence parameters were strongly nonzero for adults

(d2), and appeared to be different for nymphs and adults

(only 0.0006 of the posterior had d1 . d2).
Residual autocorrelation and differences between

fields were tested for the baseline model GDD2

(Gompertz density dependence with two parameters).

No field showed residual autocorrelation—supporting

the approximate sequential independence of residuals—

but there were significant differences between fields

(F17, 168 ¼ 2.55, P ¼ 0.001). Tukey’s hsd method

identified fields 18 and 2 as the source of strong

differences, and when they were removed, differences

among fields were no longer significant (F15, 153¼ 1.41, P

¼ 0.15). All subsequent residual analysis omits those

fields (with no meaningful effect on results).

Temperature but not nitrogen was significantly

correlated with the one-step-ahead residuals fromModel

GDD2 (Table 2; the Appendix shows one-step-ahead

predictions). When temperature effects on F and M

(Model GDD2temp2) or just F (Model GDD2tempF)

were included, the residual-vs.-temperature relation was

random, indicating that one temperature component

sufficiently captured its effect. When nitrogen effects on

F and M were included (Model GDD2nit2), the

residual-vs.-temperature relation was almost unchanged;

temperature and nitrogen were significantly, but weakly,

correlated (R2 ¼ 0.03, P ¼ 0.02). These results accord

qualitatively with the Bayesian posterior, which has

FIG. 2. Bayesian two-dimensional marginal posterior densities for models with either two nitrogen or two temperature
parameters (GDD2nit2 and GDD2temp2, respectively). Each subfigure shows contours and log-density differences of�1,�3,�5,
and�7 from the maximum (‘‘3’’), corresponding to posterior density ratios of 0.37, 0.050, 0.0067, and 0.00091, respectively. The
strongest evidence is for an effect of temperature on fecundity.

TABLE 1. Bayesian evidence for temperature and nitrogen
effects on aphids.

Parameter HPMD� Evidence�

Model GDD2temp

F vs. Temp. (bT,F) 0.062 [0.10, 23.1, 0.20]
M vs. Temp. (bT,M) 0.018 [0.22, 6.42, 0.44]

Model GDD2nit

F vs. Nit. (bN,T) 0.056 [0.47, 8.8, 0.83]
M vs. Nit. (bN,M) 0.058 [0.32, 4.8, 0.76]

Notes: Model GDD2temp2 has Gompertz density depen-
dence with two parameters plus temperature effects (Temp.) on
F (fecundity) and M (maturation rate). GDD2nit2 is a similar
model for nitrogen (Nit.) effects.

� HPMD is the highest posterior marginal density estimate
for the one-dimensional marginal distribution.

� Evidence is reported as [proportion of posterior density
below zero (i.e., one-tailed evidence), ratio of highest posterior
marginal density to density at 0, proportion of posterior density
with lower density than 0 (i.e., two-tailed evidence)].

TABLE 2. Frequentist evidence and RMSE for temperature
and nitrogen effects on aphid nymphs and adults.

Model RMSE

Residuals
vs. Temp.

Residuals
vs. Nit.

R2 P R2 P

GDD2

Nymph 0.71 0.01 0.12 0.01 0.26
Adult 0.73 0.03 0.02 0.01 0.18

GDD2temp2

Nymph 0.67 0.00 0.99 0.01 0.26
Adult 0.69 0.00 0.55 0.00 0.66

GDD2nit2

Nymph 0.69 0.02 0.10 0.00 0.52
Adult 0.72 0.03 0.02 0.00 0.53

GDD2tempF

Nymph 0.67 0.00 0.99 0.01 0.26
Adult 0.70 0.01 0.30 0.01 0.20

Notes: For each model, one-step-ahead residuals from the
MLE (maximum-likelihood estimate) parameters were used to
estimate RMSE (root mean squared error), and correlations
with temperature and nitrogen. P values are bootstrapped;
boldface indicates P , 0.05.
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nitrogen parameters straddling zero and strongest

evidence for the temperature effect on F (Table 1, Fig.

2). However, taken alone, the Bayesian evidence for the

temperature effect might have been judged as equivocal,

with 10% of the bT,F posterior below 0 and 20% with

lower posterior density than 0. The temperature effect

on fecundity was retained for testing of predator effects

(Models GDD2tempFpred1).

All predators showed evidence for positive predation

parameters (Fig. 3, Table 3). As a ‘‘control’’ analysis of a

non-predator (put in the model as a predator), spider

mites had a posterior centered near zero with 61%

negative values. Regardless of possible mite–aphid

interactions, this suggests that positive posteriors for

the true predators are not an analysis artifact. Both

Bayesian and frequentist analysis gave similar point

estimates of individual predation rates, aP, with aP

decreasing in the order: Zelus, lacewing larvae, Nabis,

Orius, Geocoris for sweep-net data; and lacewing larvae,

Geocoris, lacewing eggs, Orius for whole-plant data.

While the statistical strength of each ordering is unclear,

the overall order accords well with predator-enclosure

experiments, with lacewing larvae having clearly the

highest predation rate and Nabis having a higher rate

that the smaller species Orius and Geocoris. The clearest

surprise is the high predation rate of Zelus, a large

species but one that could potentially positively affect

aphids by suppressing other predators but does not

appear to do so at field scales.

Estimates of the net effect of each predator on aphid

population growth were calculated using the median

densities for each predator and for aphids. The posterior

distribution (Bayesian) of population growth rate (k)
was calculated, giving population effects in decreasing

FIG. 3. Correlations of one-step-ahead adult residuals from Model GDD2 vs. temperature and nitrogen.

TABLE 3. Bayesian estimates and evidence for predator effects.

Predator

HPMD�

Evidence� Median§ Aphid growth||SN WP

None N/A N/A N/A 432 [1.46, 1.67, 1.91]
Orius 0.0036 0.0018 [0.045, 25.8, 0.17] 6.7 [1.41, 1.61, 1.84]
Geocoris 0.0016 0.0077 [0.033, 28.7, 0.15] 19.3 [1.39, 1.60, 1.83]
Lacewing eggs N/A 0.0022 [0.010, 65.1, 0.06] 23.3 [1.35, 1.55, 1.78]
Lacewing larvae 0.0075 0.011 [0.015, 59.3, 0.07] 4.7 [1.38, 1.59, 1.82]
Zelus 0.012 N/A [0.05, 25.4, 0.18] 1.4 [1.42, 1.63, 1.86]
Nabis 0.0069 N/A [0.09, 15.4, 0.31] 2.0 [1.44, 1.65, 1.87]
Mites 1.2 3 10�5} [0.61, 7.8, 0.53] 214 [1.48, 1.72, 1.93]

Notes: Maximum-likelihood estimates are: Orius, 0.0032; Geocoris, 0.0015; lacewing eggs, 0.0019; lacewing larvae, 0.0072; Zelus,
0.011; and Nabis, 0.0066. N/A means not available or not applicable.

� HPMD is the highest posterior (one-dimensional) marginal density for aP, on the scale of sweep-net (SN) and/or whole-plant
(WP) counts.

� Evidence is reported as [proportion of posterior density below zero (i.e., one-tailed evidence), ratio of highest posterior
marginal density to density at 0, proportion of posterior density with lower density than 0 (i.e., two-tailed evidence)].

§ The median abundance across all data, used to estimate effect on aphid population growth rate. For the ‘‘none’’ row, median
aphids per 50 leaves is given.

|| The [5th, 50th, 95th] percentiles of posterior distribution of aphid population growth for median aphid and predator
populations. For the ‘‘none’’ row, no predator is included.

}Herbivorous mites were counted from washed leaves, not sweep nets or whole-plant searches.
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order of: lacewing eggs, lacewing larvae, Geocoris, Orius,

Zelus, Nabis. Incorporating frequentist uncertainty in

parameter estimates for such a calculation is not as

straightforward, but simply using the MLE parameters

gives an identical ranking of net effects. Again, while

evidence for the relative order of each predator—even if

each is judged as meaningfully different from zero—

appears weak, the pattern of Orius and Geocoris

(smaller, more abundant predators that are more likely

to eat aphids) having larger population-level effects than

Nabis and Zelus (larger, less abundant predators able to

eat other predators as well as aphids) is consistent with

our predictions, while the predicted role of lacewings

was that it would have small population effect due to

intraguild predation.

While the two methods accord in ranking individual

and population-level effects, they differ in assessing the

weight of evidence for each effect. Bayesian evidence

essentially follows the ranking of individual effects,

while frequentist analysis of GDD2tempF residuals vs.

predators (Table 4) revealed statistically significant

effects only for Nabis and Geocoris (both negative;

Fig. 4) with significance decreasing in the order: Nabis,

Geocoris, lacewing larvae, lacewing eggs, Zelus, Orius.

These correlations did not account for functional-

response saturation such as in the GDD2tempFpred1

model, and correlations of residuals vs. predators/(Total

aphids), where (Total aphids) is the mean estimated

(latent) aphid abundance, revealed no significant corre-

lations. Thus, frequentist evidence suggests that Nabis

and Geocoris are significantly associated with below-

expected Aphis gossypii densities, but this pattern is not

associated with a functional-response model.

While the density, temperature, and predator effects,

but not the lack of nitrogen effect, are plausibly

consistent with small-scale studies, they fall short of

explaining net aphid dynamics. All of the estimated

effects contributed only negligible improvements to the

residual root-mean-squared-error, which was in the

range 0.67–0.71 and 0.69–0.73 for nymphs and adults,

respectively. These values correspond to about two

thirds of roughly one-week predictions falling within

about a factor of 2 from the actual data, which cannot

be considered strong prediction. Weak contributions to

predictive power accord with the low R2 values of the

frequentist correlations for temperature and predator

effects, and also may explain the discrepancies between

strength of Bayesian and frequentist predator evidence.

TABLE 4. Frequentist evidence for predator effects and root-mean-squared-error (RMSE) for predator models.

Predator

Nymphs Adults

RMSE Resid. R2 Resid. P RMSE Resid. R2 Resid. P

Orius 0.69 0.00 0.92 0.71 0.00 0.66
Geocoris 0.66 0.03 0.02 0.67 0.02 0.05
Lacewing eggs 0.69 0.00 0.68 0.70 0.01 0.18
Lacewing larvae 0.66 0.00 0.58 0.69 0.00 0.98
Zelus 0.68 0.00 0.72 0.70 0.01 0.29
Nabis 0.69 0.08 0.0001 0.71 0.08 0.0001
Mites 0.66 0.00 0.49 0.69 0.01 0.19

Notes: RMSE is reported for the GDD2tempFpred1 model with each predator. Residual R2 and P values give correlations
between residuals of the GDD2tempF model vs. predator time series. Boldface indicates P , 0.05. There were no significant
correlations of residuals vs. predator divided by estimated total aphids, corresponding to a saturated functional response.

FIG. 4. Correlations of one-step-ahead nymph residuals from Model GDD2tempF vs. Nabis and Geocoris.

February 2008 539APHID STATE–SPACE MODEL



DISCUSSION

We conducted a complementary Bayesian and fre-

quentist state–space model analysis that incorporates

stage-structured population dynamics with short time

steps and allows top-down, bottom-up, density-depen-

dence, and abiotic effects. Estimates of basic aphid

demographic rates were biologically reasonable, al-

though with high statistical variability, with the possible

exception of adult survival. Estimates of stage-specific

density dependence suggest that unstructured models of

density dependence may not capture field dynamics of

some populations. Noisy effects of temperature and

some predators were detected but contributed little

explanatory power.

Thus, while the nonlinear state–space model approach

and joint Bayesian and frequentist analysis has allowed

insight into noisy statistical relationships, the overall

predictability of field-scale aphid dynamics is only barely

improved by including data on most of the major factors

elucidated by small-scale experiments. This is a sobering

result that raises the questions of when and how well

field-scale predictability of insect dynamics can be

achieved from small-scale experiments. It also suggests

that combining maximum-likelihood estimation and

residual analysis of overall predictive power may

contribute to robust application of state–space popula-

tion models in a manner complementary to Bayesian

posterior analysis.

What processes might drive aphid dynamics that were

beyond the scope of our data and model? Both herbivore

and/or predator populations could be driven by

landscape-scale processes, so that field scales are too

small to estimate important driving variables; or

population fluctuations could occur at smaller scales

than we measured, so that our large-scale data obscured

important processes. Unmeasured factors such as soil

biota and watering regimes, neighboring crops, and even

short-term evolution (Via and Shaw 1996) could have

affected aphids. Phenotypic plasticity of morphology

and life history is known to be large for A. gossypii. Had

the stage-structured model achieved better predictabil-

ity, one might have argued that it successfully reflected

phenotypic plasticity (e.g., as a density or temperature

effect), but it is possible that it was somehow structurally

inadequate or that data were not sufficiently accurate to

estimate all model effects. Most natural populations are

spatially open, subject to a wide range of environmental

conditions and disturbances, and are expected to

undergo complicated dynamics. The questions of

whether, when, and at what scale a relatively complete

statistical accounting of population dynamics can be

achieved is an important area for future research.
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APPENDIX

Figures presenting the aphid, predator, temperature, and nitrogen data from each field and year, with estimated conditional
aphid distribution given maximum-likelihood parameters (Ecological Archives E089-028-A1).
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