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a b s t r a c t

In the context of inverse or parameter estimation problems we demonstrate the use of
statistically basedmodel comparison tests in several examples of practical interest. In these
exampleswe are interested in questions related to information content of a particular given
data set and whether the data will support a more complicated model to describe it. In the
first examplewe compare fits for several differentmodels to describe simple decay in a size
histogram for aggregates in amyloid fibril formation. In a second example we investigate
whether the information content in data sets for the pest Lygus hesperus in cotton fields as
it is currently collected is sufficient to support amodel in which one distinguishes between
nymphs and adults. Finally in a third example with data for patients having undergone an
organ transplant, we question whether the data content is sufficient to estimatemore than
5 of the fundamental parameters in a particular dynamic model.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Uncertainty quantification in the context of estimation of parameters has become a focus of increased attention in recent
years. As mathematical models become more complex with multiple states and many parameters to be estimated using
experimental data, there is a need for critical analytical tools in model validation related to the reliability of parameter
estimates obtained inmodel fitting. Methodology is desirable to distinguish between lack of identifiability in amodel (often
formulated in a generalized algebraic context) vs. local insensitivity with respect to changes in particular parameters vs.
lack of information content in a given data set. A recent concrete example involves previous HIV models [1,2] with 15
or more parameters to be estimated. In [3], using recently developed parameter selectivity tools [4] based on parameter
sensitivity based scores, the authors showed that many of the parameters could not be estimated with any degree of
reliability. Moreover, it was found that quantifiable uncertainty varies among patients depending upon the number of
treatment interruptions (perturbations of therapy). This leads to a fundamental question of how much information with
respect to model validation can be expected in a given data set or collection of data sets. In this note, we consider one tool
that may be used in attempts to answer this question.
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Here we demonstrate the use of statistically based model comparison tests in several examples of practical interest. In
these examples we are interested in questions related to information content of a particular given data set and whether
the data will support a more detailed or sophisticated model to describe it. In the first example we compare fits for several
different models to describe simple decay in a size histogram for aggregates in amyloid fibril formation. In a second exam-
ple we investigate whether the information content in data sets for the pest Lygus hesperus in cotton fields as it is currently
collected is sufficient to support a model in which one distinguishes between nymphs and adults. Finally in a third example
with data for patients having undergone an organ transplant we question whether the data content is sufficient to estimate
more than 5 of the fundamental parameters in a specific dynamic model. In the next section we recall the fundamental tests
to be employed here.

2. Summary of ANOVA type statistical comparison tests

In general, assume that we have an inverse problem for the model observations f (t, q) and are given n observations. We
define

Jn(q) = Jn(Y, q) =
1
n

n
j=1

[Yj − f (tj, q)]2 (1)

where our statistical model has the form

Yj = f (tj, q0) + Ej, j = 1, . . . , n.

Here, q0 is the ‘‘true’’ value of qwhich we assume to exist. We use Q to represent the set of all the admissible parameters q.
We make the standard statistical assumptions [5–7]:

• (A1) The random variables {Ej}
∞

j=1 are independent and identically distributed with E(Ej) = 0 and Var(Ej) = σ 2.
• (A2) Q is a compact subset of Euclidean space of Rp and f (t, q) is continuous on [0, T ] × Q.
• (A3) Observations are at {tj}nj=1 in [0, T ]. For some finite measure µ on [0, T ],

1
n

n
j=1

h(tj) −→

 T

0
h(t)dµ(t)

as n → ∞, for all continuous functions h.
• (A4) J0(q) =

 T
0 (f (t, q0) − f (t, q))2dµ(t) = σ 2 has a unique minimizer in Q at q0.

Let qn = qnOLS(Y) be the OLS estimator for Jn with corresponding estimate

q̂n = qnOLS({yj})

for a realization y = {yj}. That is,

qn(Y) = argmin
q∈Q

Jn(Y, q)

and

q̂n = argmin
q∈Q

Jn(y, q).

One can then establish a series of useful results (see [5,6] for detailed proofs; see also [8]).

Theorem 2.1. Under (A1)–(A4), qn = qnOLS(Y) −→ q0 as n → ∞ with probability 1.

Wewill need further assumptions to precede (these will be denoted by (A7)–(A11) to facilitate reference to [5,6]). These
include:
• (A7) Q is finite dimensional in Rp and q0 ∈ int Q.
• (A8) f : Q → C[0, T ] is a C2 function.
• (A10) J =

∂2J0
∂q2

(q0) is positive definite.
• (A11) QH = {q ∈ Q|Hq = c} where H is an r × pmatrix of full rank, and c is a known constant.

In many instances, including the motivating examples discussed here, one is interested in using data to question whether
the ‘‘true’’ parameter q0 can be found in a subsetQH ⊂ Qwhichwe assume for discussions here is defined by the constraints
of assumption (A11). Thus, we want to test the null hypothesis H0: q0 ∈ QH .

Define then

qnH(Y) = arg min
q∈QH

Jn(Y, q)

and

q̂nH = arg min
q∈QH

Jn(y, q)
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and observe that Jn(Y, q̂nH) ≥ Jn(Y, q̂n). We define the related non-negative test statistics and their realizations, respectively,
by

Tn(Y) = n(Jn(Y, qnH) − Jn(Y, qn))
and

T̂n = Tn(y) = n(Jn(y, q̂nH) − Jn(y, q̂n)).
One can establish asymptotic convergence results for the test statistics Tn(Y)—see [5]. These results can, in turn, be used

to establish a fundamental result about much more useful statistics for model comparison. We define these statistics by

Un(Y) =
Tn(Y)

Jn(Y, qn)
, (2)

with corresponding realizations
ûn = Un(y).

We then have the asymptotic result that is the basis of our ANOVA-type tests:

Theorem 2.2. Under the assumptions (A1)–(A4) and (A7)–(A11) above and assuming the null hypothesis H0 is true, then Un
converges in distribution (as n → ∞) to a random variable U(r)

Un
D

−→U(r)

having a chi-square distribution χ2(r) with r degrees of freedom.

Wenote that if one is dealingwith vector observations with n = n1+n2 total component observations as we do in two of
the examples below, then asymptotic theory requires that n1 → ∞ and n2 → ∞. In any graph of a χ2 density there are two
parameters (τ , α) of interest. For a given value τ , the valueα is simply the probability that the randomvariableU will take on
a value greater than τ . That is, Prob{U > τ } = α where in hypothesis testing, α is the significance level and τ is the threshold.

We then wish to use this distribution to test the null hypothesis, H0, for Un ∼ χ2(r). If the test statistic, ûn > τ ,
then we reject H0 as false with confidence level (1 − α)100%. Otherwise, we do not reject H0. For our examples below,
we use a χ2(1) table, which can be found in any elementary statistics text or online. Typical confidence levels of interest are
75%, 90%, 95%, 99% with corresponding (α, τ ) values of (.25, 1.32), (.1, 2.71), (.05, 3.84), (.01, 6.63), respectively. To test
the null hypothesis H0, we choose a significance level α and use χ2 tables to obtain the corresponding threshold τ = τ(α)
so that P(χ2(r) > τ) = α. We next compute ûn = τ and compare it to τ . If ûn > τ , then we reject H0 as false; otherwise,
we do not reject the null hypothesis H0.

2.1. Weighted least squares

Themodel comparison results outlined can be extended to deal withweighted least squares problems inwhichmeasure-
ment errors are independent with E(Ek) = 0 and Var(Ek) = σ 2w2(tk), k = 1, 2, . . . , n, wherew is some known real-valued
function with w(t) ≠ 0 for any t . This is achieved through rescaling the observations in accordance with their variance (as
discussed in [6]) so that the resulting (transformed) observations are identically distributed as well as independent.

3. Size distribution of aggregates in amyloid fibril formation

3.1. Best fit to size distributions

In a recent paper [9], a question was addressed about size distribution of aggregates in amyloid fibril formation. While
an exponential distribution was shown to provide a reasonable fit to the data depicted in Fig. 1, the question arose as to
whether another distribution such as theWeibull or gamma distributions with more parameters might provide a better fit.

3.2. The exponential, Weibull and gamma distributions

On initial observation, the data appears to be well suited to an exponential distribution. The exponential distribution
probability density function is defined as E(x; λ) = λe−λx. Note that when fitting the data, an additional parameter A was
added to the exponential function resulting in a total of two parameters and the function to be defined for these purposes as

E(x; A, λ) = Aλe−λx.

The Weibull distribution probability density function is defined as (for the purposes of modeling the data we again add
the additional parameter A)

W (x; A, λ, k) = Akλ(λx)k−1e−(λx)k , x ≥ 0.
Note that if we take k = 1we have thatW (x; A, λ, 1) = E(x; A, λ). This function is shown plotted belowwith several values
of k. We can see that when k = 2 or k = 1 the function also bears a resemblance to the shape of our data.
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Fig. 1. Experimental distribution of the sample xi , 1 ≤ i ≤ n, representing the measured sizes of polymers (the number of polymers below a certain size
(145 monomers) is unknown). The total size of the sample is n = 626.

(a) Weibull probability density function. (b) Gamma probability density function.

Fig. 2. Graphical comparisons of the Weibull and gamma with different values of λ and k.

The probability density function of the gamma distribution is defined as (we again include the additional parameter A
for modeling purposes)

G(x; A, k, λ) = A
λk

Γ (k)
xk−1e−λx for x > 0 and k, λ > 0,

where Γ (k) is the gamma function evaluated at k. We can see in Fig. 2 that when k = 1 and λ = 0.5, the gamma probability
density function again has a similar shape to the data. Since we know that Γ (1) = 1, we can see that when we take k = 1
we have that G(x; A, 1, λ) = E(x; A, λ). Thus an interesting question is whether we can obtain an statistically better fit to
the data in Fig. 1 by allowing an additional free parameter k in either the Weibull or gamma distribution in comparison to
the two parameter (A, λ) exponential model.

3.3. Results using the comparison tests

We tested the following hypothesis and alternative for two different alternative models: a Weibull and a gamma
distribution:
• H0: The fit provided by an alternative model is not significantly different from the fit with an exponential distribution.
• HA: The alternative model with an unrestricted additional parameter k provides a significantly better fit than the expo-

nential model (corresponding to the restriction k = 1).

When comparing the best fits of the exponential vs. the Weibull distributions we obtained the following results: Jwn =

1.4359 × 10−4, Jen = 1.6081 × 10−4, T̂ ew
n = 4.6495 × 10−4, and ûew

n = τ̄ = 3.2381. In this case we cannot reject the null
hypothesis at the 95% or higher level. We can reject at the 90% confidence level.

When comparing the best fits of the exponential vs. the gamma distribution we obtained the following results: Jgn =

1.4277 × 10−4, Jen = 1.6081 × 10−4, T̂ eg
n = 4.8693 × 10−4, and ûeg

n = τ̄ = 3.4105. Again in this case we cannot reject the
null hypothesis at the 95% or higher level but we can reject at the 90% confidence level.

4. Lygus hesperus population dynamics: model comparison and parameter estimation

Lygus hesperus is a prevalent insect in California which feeds on cotton and other plants [10]. Given a robust data set of L.
hesperus counts from over 500 Californian fields over several years, we aim to gain more information about L. hesperus and
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direct future research relating to its effects on crops. We propose 2 ordinary differential equation models, estimate param-
eters for each model, and perform model comparison techniques to determine which model is more appropriate, given the
population dynamics and the nature of the data.

4.1. Data

Our main database consists of over 1500 data sets (comprising over 500 distinct fields) of L. hesperus counts. One data
set is characterized by the following: a designated pest control advisor (PCA) counts the number of L. hesperus found in a
sample of field sweeps (50 large net sweeps = 1 sample) at intermittent times from early June to early August. We assume
that field counts are independent between years (i.e., if one field is sampled in 2004 and 2005, we consider these data sets
to be independent).

To narrow down this vast collection of data, and to start with the simplest case, we choose a sub-collection of the
data consisting only of data sets corresponding to fields that were untreated by pesticides for a minimum of 2 uninter-
rupted months, in which PCAs counted both nymphs AND adults. There were at least 40 data sets of this nature. By starting
with this sub-collection, we are able to study the insect population dynamics which are not directly affected by pesticides.
We note that pesticide usage on nearby crops can have both direct and indirect effects on pests in neighboring fields, but
choose to ignore this potential effect for now, as it is largely unknown and variable. In addition, this allows us to propose a
2-dimensional population model. In this model, we choose 6 of these data sets as a preliminary study. An example of one
data set can be seen in Table 4 of [11]. Note that there are several data points where adult and nymph counts are non-integer
values. This is due to the fact that several fields were so large that PCAs chose to do a number of samples within one field
on one particular observation day and averaged the results.

4.2. Model

We assume that there are 2 distinct population classes: nymphs and adults. We will denote their populations as x1(t)
and x2(t) respectively, where t is timemeasured in months (t ≥ 0). Given this particular insect and data collection scheme,
we consider t = 0 tomean June 1 (as no observations in our data sets aremade before this date). For now, wewill ignore the
effect of pesticides on the population, and consider the population dynamics of L. hesperus in an untreated environment. We
do not assume a closed population (i.e. dX

dt ≡
dx1
dt +

dx2
dt ≠ 0.) In addition, it is assumed that there are at least 3 generations

per year. We first consider a simple 2-dimensional ordinary differential equation model. Model A is as follows:

dx1(t)
dt

= βx2(t) − γ x1(t)

dx2(t)
dt

= γ x1(t) − µ2x2(t),
(3)

where β is the birth rate of nymphs, γ is the transition rate of nymphs into adulthood, andµ2 is the adult death rate, all with
unit [1/t]. Clearly, Model A assumes that there is no (or trivial) nymph mortality. However, Model B assumes a non-trivial
nymph mortality:

dx1(t)
dt

= βx2(t) − (γ + µ1)x1(t)

dx2(t)
dt

= γ x1(t) − µ2x2(t),
(4)

where µi is the death rate for xi, i = 1, 2. For both models A and B, initial conditions
X1 = (x1(t1), x2(t1)) := (x1,1, x2,1)

are first estimated for a given data set and then fixed (see [11] for discussions). Note that t1, the time of the first observation,
varies between data sets. Our goal is to estimate parameters q = {β, γ , µ1, µ2} in Model B using our chosen data sets
(note that the parameters in Model A are equivalent to those in Model B, with the constraint that µ1 = 0). We will use
MATLAB’s constrained optimization tool, fmincon and both ordinary least squares (OLS) and weighted least squares (WLS)
techniques [6].

For a subset of the data, our team used a more thorough method to collect data on the same fields at roughly the same
time as the PCAs to be used for comparison purposes. In comparing these data (see [11]), we found higher variability in the
nymph counts than in the adult counts. This leads us to believe that usingweighted least squares in our parameter estimation
is important. To estimate parameters, one must search within an admissible parameter space, Q, for the model parameters
that produce amodel outputmost similar to the data. In otherwords, onemustminimize the cost functional, Jn defined to be

Jn = Jn(y, q) =
1
2n

n
i=1

k
j=1

ωj(yij − mij)
2, (5)

where yij = is the data point from the jth class at the ith time point, andmij = is the model output for the jth class at the ith
time point, given a parameter estimate. Between fields, n (the number of vector observations in a sample) is variable. Note
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(a) Model fit vs. DS 1—nymphs. (b) Model fit vs. DS 1—adults.

Fig. 3. Model fit vs. DS1.

that k = 2 (the total number of classes within the data), and j = 1 corresponds to the nymph class and j = 2 corresponds
to the adult class so that the total number of data points is 2n. Let Ω = {ω1, ω2}. There are formal ways of choosing Ω , but
we will start with some basic choices. If we choose Ω = {0, 1}, we are ignoring the nymph counts in the search for the best
parameter estimates for the model. If we choose Ω = {0.5, 1}, we are giving less weight to the nymph class than to the
adult class. Note that if we choose Ω = {1, 1}, we return to an OLS method.

4.3. Parameter estimates and model comparison test

There are differing opinions among PCAs and researchers about whether both nymphs and adults need to be counted.
The reasons for these differences are varying beliefs regarding the effect of pesticides and other factors on the L. hesperus
populations. To the extent that accurately counting both nymphs and adults is more time-intensive than simply regarding
adult L. hesperus, we seek a quantitative measure to determine whether counting both nymphs and adults (in the manner in
which it is presently done) is necessary, or if it is sufficient to simply count the total number of insects. We see that the sole
difference between Models A and B ((3) and (4), respectively) is the assumption of no nymph mortality in Model A. Note
that model A can be more simply written as

dX
dt

= αx2(t), (6)

where X(t) = the total number of L. hesperus at time t (X = x1 + x2), and α = β − µ2. This simpler model is exponential
in nature. One may wonder how this model could possibly be exponential in nature, when there are 2 state variables, X
and x2 in one differential equation. We found consistently among PCA-collected data that the nymph counts were almost
always zero. Therefore, given the current collection strategies, X ≈ x2, and (6) truly becomes an exponential growth model.
A natural question is the following: by allowing nymph mortality to be non-zero, does our model better fit the data? To
address this question we use the model comparison results outlined above to test the null hypothesis: is the true set of
parameter values, q0, in a constrained subset QH of Q, which requires that µ1 = 0, or do we obtain a statistically significant
better fit allowing µ1 ≠ 0? Here q = {β, γ , µ1, µ2} ∈ Q ≡ [−δ, 100] × [−δ, 100] × [−δ, 100] × [−δ, 100] where δ > 0
is very small and QH ≡ {q ∈ Q | µ1 = 0}.

Therefore, by testing the null hypothesisH0 : q0 ∈ QH , we can determinewith a definitive amount of confidencewhether
we can assume no nymph mortality and thus use a simple model such as Model A to describe the data.

4.4. Results

We chose to perform this analysis on 6 data sets, with 4 choices of Ω: Ω1 = {1, 1}, Ω2 = {0.5, 1}, Ω3 = {0.2, 1},
and Ω4 = {0, 1}. As seen in Table 5 of [11] (an abbreviated version of this table for data set 1 is given in Table 1), for all cases
(except for data set 4withΩ3), the confidence to rejectH0 is less than19%. In [11],we see thatmany estimates forµ1 returned
values relatively small and/or close to zero. This is further evidence that it may be acceptable to assume no nymphmortality.

We have also included plots of model fits vs. data for data set 1, as these were illustrative of the results we found across
the 6 data sets used in the previous analysis. As one can see in Fig. 3, the model fits the adult data well, while the model fits
the nymph data poorly.

4.5. Conclusions

Overall, we find compelling evidence for the untreated fields, by themodel comparison test, thatwe shouldNOT reject the
null hypothesis. In other words, it may be reasonable to ignore nymph mortality (i.e., just count total number of L. hesperus
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Table 1
Model comparison test results for data set 1, with several weights, where ‘‘Confid’’ denotes the confidence to
reject the null hypothesis, H0 .

Data set 1 with estimated initial conditions {x1,1, x2,1} = {0, 0.06}

Ω Confid q̂n q̂nH ûn Jn(y, q̂n) Jn(y, q̂nH )

{1,1} 3.57% {8.14, 99.74, 0.00, 7.32} {7.59, 92.97, 0, 6.77} .0020 .2410 .2410
{0.5,1} 0% {9.47, 94.14, 0.00, 8.62} {8.97, 89.35, 0, 8.13} .0000 .2309 .2309
{0.2,1} 2.98% {12.79, 88.69, 0.00, 11.88} {12.02, 83.84, 0, 11.12} .0014 .2241 .2241

Fig. 4. BKV model.

and not distinguish between nymphs and adults), which would greatly simplify the model, as given in (6), as well as the
data collection process. It is important to note that this conclusion may not be reasonable for data sets in which pesticide
treatment was used, as we have not yet performed analysis on data sets of that nature. While our earlier findings suggest
that it may be sufficient to only count the total number of L. hesperus, rather than distinguish between adults and nymphs,
we must in future efforts proceed to use similar analyses with data from treated fields.

5. Model comparison in organ transplant modeling

5.1. Mathematical model description and data

We focus on modeling of the BK virus, a common pathogen (and major threat) found in kidney transplant patients—
see [12] and references therein. We describe the dynamics of the viral load V , susceptible HS and infected HI host cells,
BKV-specific EV and allospecific EK effector CD8+ T cells and serum creatinine C with a brief description of the underlying
biological model for which we base our mathematical model. In Fig. 4 we illustrate the intracellular dynamics embodied in
the model.

Active BKV infection targets both renal tubular epithelial cells and urothelial cells. For this model, however, we focus on
one BKV target, the renal tubular epithelial cells. Susceptible host cells, the uninfected kidney tubular epithelial cells, HS , in
the absence of infection, are assumed to proliferate through the term λHS


1 −

HS
κHS


HS , indicating that new epithelial cells

are derived from proliferation of existing HS . Proliferation is modeled by logistic dynamics with λHS being the maximum
proliferation rate and κHS is the cell density at which proliferation shuts off. A loss of susceptible cells, HS , due to viral
infectionwhich occurs by cell-to-cell transmission, is represented by the termβHSV . Herewe assume that one copy of virion
infects one cell. Infected host cells or BKV replicating cells, HI , lyse due to the cytopathic effect of BK virus, represented by
the term δHIHI and produce ρV virions before death. In addition, infected host cells are eliminated by the BK-specific effector
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CD8+ T cells with rate term δEHEVHI . Free virus is naturally cleared at the rate δV by the body and a loss of viral concentration
is experienced through the infection of susceptible host cells.

The cellular immune response is the key defense against the BK-viral infection. The terms λEV and δEV represent the
source and death rates of BK-specific effector CD8+ T cells. The concentration of BK-specific CD8+ T cells increases in
response to the presence of free virus through the term ρEVEV , where ρEV is a bounded positive increasing function of free
virus concentration. Specifically, ρEV (V ) = (ρ̄EVV )/(V +κV ) is a saturating nonlinearity with positive constants ρ̄EV and κV .
The alloreactive immune response to the transplanted kidney is incorporated into the model via a state variable, EK , which
denotes the effector CD8+ T cells that specifically target the transplant. The source rate for EK , λEK , is dependent upon the
HLA donor/recipientmatching conducted prior to transplantation. Similar to the BK-specific CD8+ T cells, the concentration
of allospecific CD8+ T cells increases in response to the presence of susceptible host cells HS , since BK-virus targets kidney
cells, represented by the term ρEKEK , where ρEK (HS) = (ρ̄EKHS)/(HS + κKH) with positive constants ρ̄EV and κKH . The death
rate of EK is represented by δEK .

Finally, we discuss the role of creatinine in the model. Creatinine is a waste product in the blood resulting from muscle
activity and is removed by the healthy kidney. Therefore, serum creatinine concentration C is used as a surrogate for
glomerular filtration rate (GFR), a commonly used index of kidney function [12]. The production rate of C is represented
by λC and when the kidney is impaired, creatinine is not effectively filtered and its concentration increases. (Recall that
the renal allograft is a site of replication. Hence, the concentration of susceptible cells reflects the health of the kidney.) To
account for the negative effect of the alloreactive immune response EK on the kidney and the positive effect of susceptible
cells HS , the clearance rate δC is defined as follows

δC (EK ,HS) =
δC0κEK

EK + κEK
·

HS

HS + κCH
.

Based on the above discussions and those in [12], the model is given as follows:

ḢS = λHS


1 −

HS

κHS


HS − βHSV , (7)

ḢI = βHSV − δHIHI − δEHEVHI , (8)

V̇ = ρV δHIHI − δVV − βHSV , (9)

ĖV = (1 − ϵI)[λEV + ρEV (V )EV ] − δEVEV , (10)

ĖK = (1 − ϵI)[λEK + ρEK (HS)EK ] − δEKEK , (11)

Ċ = λC − δC (EK ,HS)C, (12)

with initial conditions (HS(0), HI(0), V (0), EV (0), EK (0), C(0)) = (HS0, HI0, V0, EV0, EK0, C0).
We note that (7)–(10) describe the immune response to the viral infection coupled with (11) and (12) describing the

immune response to the transplanted kidney. Here ϵI represents the efficacy of immunosuppressive drugs and is assumed
to be scaled to less than or equal to 1. This variable serves as the controller of the system to achieve balance between under-
suppression and over-suppression of the patient’s immune system.

In order to compare the effectiveness of various model components, we again used the statistical model comparison test
described earlier to test the null hypothesis,H0, that an additional 6th parameter is not needed to describe the system.Among
the parameters we focus on here are β, δEK , λC , ρV , δV , ρ̄EK , δEV , ρ̄EV , and ϵI . If the null hypothesis is rejected, we determine
that the parameter in question is needed to better describe the data. The parameter vector q belongs to the parameter
set Q, and the restricted parameter set QH ⊂ Q is defined for each model comparison test by fixing the parameter in
question. The observed amount of free virus (DNA) in the blood is represented by ȳi1, with corresponding measured time
point t1i , i = 1, 2, . . . , n1, and ȳi2 is the observed amount of serum creatinine at time point t2i , i = 1, 2, . . . , n2. We define
y1i = log10(ȳi

1), i = 1, 2, . . . , n1, and y2i = ȳi2, i = 1, 2, . . . , n2, with n = n1 + n2 = 8 + 16 data points in the data
considered here and in [12]. Let y = [y11, . . . , y

1
n1 , y

2
1, . . . , y

2
n2 ]

T . We define the OLS cost to be

Jn(y, q) =
1

n1 + n2

 n1
i=1

|f1(t1i ; q) − y1i |
2
+

n2
i=1

|f2(t2i ; q) − y2i |
2

.

5.2. Comparison of 5 vs. 6 parameters

We tested whether the immune response to BK virus infection and donor kidney in renal transplant recipients could
be more accurately described estimating six vs. five parameters, using the model found in previous work. Based on our
sensitivity analysis in [12], we felt we could reliably estimate 5 parameters including QH = {β, ρ̄EV , δEV , δEK , ρ̄EK }. We
chose an additional sixth parameter to estimate to form Q and ran the corresponding inverse problems. Here we refer to
the case of estimating 5 parameters as ‘‘Model QH ’’ and the case associated with 6 estimated parameters as ‘‘Model Q’’. To
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Table 2
Ordinary least squares costs and model comparison test statistics for the BK virus
models. Model QH is the case in which we estimate 5 parameters and Model Q is the
case in which we estimate 6 parameters. We used the statistical model comparison
techniques given above to test whether the OLS cost was significantly lower for Model
Q. The resulting model comparison test statistics were not significant at the 95% level,
indicating that estimating 6 parameters does not yield a statistically better data fit.

Q Model QH cost Model Q cost ûn

{q = (β, δV , ρ̄EV , δEV , δEK , ρ̄EK )} 0.0031 0.0030 0.8000
{q = (β, ρ̄EV , δEV , δEK , ρV , ρ̄EK )} – 0.0031 0
{q = (β, ρ̄EV , δEV , δEK , λC , ρ̄EK )} – 0.0030 0.8000
{q = (β, ρ̄EV , δEV , δEK , ρ̄EK , ϵI )} – 0.0030 0.8000

estimate the parameters in the BKV model, we first fixed the remaining parameters, using the parameter estimates found
in [12] for the 10 estimated parameters case. We note that the forward simulations were run using ode15s and the inverse
problemswere solved using lsqnonlinwith various parameter bounds found in [12].We obtained the results given in Table 2.

To validate our use of 5 parameters, we then tested the model with these five parameters against five reduced models,
each with one parameter removed (see [11] for detailed results). Despite previous sensitivity analysis leading us to believe
thatwe could reliably estimate five parameters, the results of these tests indicatedwith 95% confidence that four parameters
were sufficient.

6. Concluding remarks

The diversity of the examples described above are ample evidence of the wide applicability of the methodology we have
proposed here. These known [5] statistically-based model comparison tests add to a growing list of tools including the pa-
rameter subset/parameter selectivity tools based on parameter sensitivity based scores [3], and other Fisher Information
Matrix, Akaike Information Criteria based techniques [6,13] that may be used to better understand information content in
data sets.
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